Pregunta
upstudy study bank question image url

(18) Accessibility Which of the following explains why the solution of \( |x|>a \) is all real numbers if \( a \) is a negative number? If \( a \) is negative, then the absolute value quantity, which is always nonnegative, will always be less than \( a \). If \( a \) is negative, then the absolute value quantity, which is always negative, will always be less than \( a \). If \( a \) is negative, then the absolute value quantity, which is always nonnegative, will always be greater than \( a \). If \( a \) is negative, then the absolute value quantity, which is always negative, will always be greater than \( a \).

Ask by Schneider Lewis. in Guam
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

If \( a \) is negative, then the absolute value of \( x \) is always greater than \( a \), so the solution is all real numbers.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

When \( a \) is a negative number, it changes the landscape of how we perceive values. The absolute value \( |x| \) represents a distance from zero, and since distances can't be negative, it holds true that \( |x| \) is always zero or positive. Thus, every value of \( |x| \) will indeed be greater than any negative number \( a \), resulting in \( |x| > a \) being satisfied by all real numbers—it’s like saying every distance is more than a step in the opposite direction! For a fun twist, think about how this applies in the real world: Consider a situation where you're measuring how far you are from your destination. If your desired distance (or target) is negative—let’s say you're considering a point before your starting position—the absolute distance you will always have (the distance from where you are to your goal) is positive. So whether you're ahead or behind, you'll always be further than that "negative" goal!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad