Pregunta
upstudy study bank question image url

Nathaniel invested \( \$ 37,000 \) in an account paying an interest rate of \( 5.7 \% \) compounded daily. Assuming no deposits or withdrawals are made, how long would it take, to the nearest year, for the value of the account to reach \( \$ 70,900 \) ? Answer Attempt 1 out of 2

Ask by Clark Reyes. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It will take approximately 11 years for Nathaniel's investment to grow to \$70,900.

Solución

To determine how long it will take for Nathaniel's investment to grow from \$37,000 to \$70,900 with a 5.7% annual interest rate compounded daily, we can use the **compound interest formula**: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) = the future value of the investment (\$70,900) - \( P \) = the principal investment amount (\$37,000) - \( r \) = annual interest rate (decimal) (5.7% = 0.057) - \( n \) = number of times interest is compounded per year (daily compounding = 365) - \( t \) = time in years **Step 1: Plug in the known values** \[ 70,900 = 37,000 \left(1 + \frac{0.057}{365}\right)^{365t} \] **Step 2: Divide both sides by \$37,000 to isolate the compound factor** \[ \frac{70,900}{37,000} = \left(1 + \frac{0.057}{365}\right)^{365t} \] \[ 1.9189189189 \approx \left(1 + \frac{0.057}{365}\right)^{365t} \] **Step 3: Take the natural logarithm (ln) of both sides to solve for \( t \)** \[ \ln(1.9189189189) = \ln\left(\left(1 + \frac{0.057}{365}\right)^{365t}\right) \] \[ \ln(1.9189189189) = 365t \cdot \ln\left(1 + \frac{0.057}{365}\right) \] **Step 4: Solve for \( t \)** \[ t = \frac{\ln(1.9189189189)}{365 \cdot \ln\left(1 + \frac{0.057}{365}\right)} \] **Step 5: Calculate the values** 1. Compute \( \ln(1.9189189189) \): \[ \ln(1.9189189189) \approx 0.6514872 \] 2. Compute \( \ln\left(1 + \frac{0.057}{365}\right) \): \[ \frac{0.057}{365} \approx 0.00015616 \] \[ \ln(1 + 0.00015616) \approx 0.0001561489 \] 3. Multiply by 365: \[ 365 \times 0.0001561489 \approx 0.0569593 \] 4. Finally, compute \( t \): \[ t \approx \frac{0.6514872}{0.0569593} \approx 11.415 \text{ years} \] **Step 6: Round to the nearest year** \[ t \approx 11.415 \text{ years} \approx 11 \text{ years} \] **Conclusion:** It will take **approximately 11 years** for Nathaniel's investment to grow from \$37,000 to \$70,900 with a 5.7% annual interest rate compounded daily.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine how long it takes for Nathaniel's investment to grow from \( \$37,000 \) to \( \$70,900 \) at an interest rate of \( 5.7\% \) compounded daily, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( A = 70,900 \) - \( P = 37,000 \) - \( r = 0.057 \) - \( n = 365 \) We need to solve for \( t \): \[ 70,900 = 37,000 \left(1 + \frac{0.057}{365}\right)^{365t} \] Start by dividing both sides by \( 37,000 \): \[ \frac{70,900}{37,000} = \left(1 + \frac{0.057}{365}\right)^{365t} \] Calculating the left side gives approximately: \[ 1.91216 \approx \left(1 + \frac{0.057}{365}\right)^{365t} \] Now, let's calculate \( \left(1 + \frac{0.057}{365}\right) \): \[ 1 + \frac{0.057}{365} \approx 1.000156164 \] Using logarithms to solve for \( t \): \[ \log(1.91216) = 365t \cdot \log(1.000156164) \] Calculate the logs: \[ \log(1.91216) \approx 0.28100 \] \[ \log(1.000156164) \approx 0.00006755 \] Now plug the values into the equation: \[ 0.28100 = 365t \cdot 0.00006755 \] Solving for \( t \): \[ t \approx \frac{0.28100}{365 \times 0.00006755} \approx \frac{0.28100}{0.0246} \approx 11.43 \text{ years} \] Rounding to the nearest year, it would take approximately \( 11 \) years for the investment to reach \( \$70,900 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad