Pregunta
Factorise the following : (ii) \( y z(y-z)+z x(z-x)+x y(x-y) \) (ii) \( y z(y+z)+z x(z+x)+x y(x+y)+2 x y z \)
Ask by Wood Harrington. in India
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The factored forms are:
(i) \( (y - z)(y - x)(z - x) \)
(ii) \( (y + z)(y + x)(z + x) \)
Solución
Factor the expression \( yz(y-z)+zx(z-x)+xy(x-y) \).
Factor the expression by following steps:
- step0: Factor:
\(yz\left(y-z\right)+zx\left(z-x\right)+xy\left(x-y\right)\)
- step1: Simplify:
\(y^{2}z-yz^{2}+zx\left(z-x\right)+xy\left(x-y\right)\)
- step2: Simplify:
\(y^{2}z-yz^{2}+z^{2}x-zx^{2}+xy\left(x-y\right)\)
- step3: Simplify:
\(y^{2}z-yz^{2}+z^{2}x-zx^{2}+x^{2}y-xy^{2}\)
- step4: Evaluate:
\(y^{2}z-y^{2}x+yx^{2}-z^{2}y+z^{2}x-zx^{2}\)
- step5: Rewrite the expression:
\(y^{2}z-y^{2}x-yxz+yx^{2}-z^{2}y+zyx+z^{2}x-zx^{2}\)
- step6: Factor the expression:
\(y\left(yz-yx-xz+x^{2}\right)-z\left(yz-yx-xz+x^{2}\right)\)
- step7: Factor the expression:
\(\left(y-z\right)\left(yz-yx-xz+x^{2}\right)\)
- step8: Factor the expression:
\(\left(y-z\right)\left(y-x\right)\left(z-x\right)\)
Factor the expression \( yz(y+z)+zx(z+x)+xy(x+y)+2xyz \).
Factor the expression by following steps:
- step0: Factor:
\(yz\left(y+z\right)+zx\left(z+x\right)+xy\left(x+y\right)+2xyz\)
- step1: Simplify:
\(y^{2}z+yz^{2}+zx\left(z+x\right)+xy\left(x+y\right)+2xyz\)
- step2: Simplify:
\(y^{2}z+yz^{2}+z^{2}x+zx^{2}+xy\left(x+y\right)+2xyz\)
- step3: Simplify:
\(y^{2}z+yz^{2}+z^{2}x+zx^{2}+x^{2}y+xy^{2}+2xyz\)
- step4: Evaluate:
\(y^{2}z+y^{2}x+2yxz+yx^{2}+z^{2}y+z^{2}x+zx^{2}\)
- step5: Rewrite the expression:
\(y^{2}z+y^{2}x+yxz+yx^{2}+z^{2}y+zyx+z^{2}x+zx^{2}\)
- step6: Factor the expression:
\(y\left(yz+yx+xz+x^{2}\right)+z\left(yz+yx+xz+x^{2}\right)\)
- step7: Factor the expression:
\(\left(y+z\right)\left(yz+yx+xz+x^{2}\right)\)
- step8: Factor the expression:
\(\left(y+z\right)\left(y+x\right)\left(z+x\right)\)
The factorization of the given expressions is as follows:
(i) \( yz(y-z)+zx(z-x)+xy(x-y) = (y-z)(y-x)(z-x) \)
(ii) \( yz(y+z)+zx(z+x)+xy(x+y)+2xyz = (y+z)(y+x)(z+x) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
For the expression \( y z(y-z)+z x(z-x)+x y(x-y) \), the factorization can be simplified by recognizing a pattern. Each pair of terms involves \( z \) multiplied by the difference of the other two variables, leading to the expression being factored as \( (x-y)(y-z)(z-x) \). In the second expression \( y z(y+z)+z x(z+x)+x y(x+y)+2 x y z \), it helps to look for common factors and rearrangements. The expression can be factored into \( (x+y)(y+z)(z+x) \). This showcases how symmetries in the variables lead to elegant groupings and yield simpler forms.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium