Pregunta
upstudy study bank question image url

2. Solve each equation by rewriting it in factored form and using the zero product property. Show your reasoning. a. \( x^{2}+8 x+15=0 \) b. \( x^{2}-8 x+12=5 \) c. \( x^{2}-10 x-11=0 \) d. \( 49-x^{2}=0 \) e. \( (x+4)(x+5)-30=0 \)

Ask by Colon Jimenez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** a. \( x = -3 \) and \( x = -5 \) b. \( x = 1 \) and \( x = 7 \) c. \( x = 11 \) and \( x = -1 \) d. \( x = 7 \) and \( x = -7 \) e. \( x = -10 \) and \( x = 1 \)

Solución

Sure, let's solve each equation by factoring and applying the Zero Product Property. The Zero Product Property states that if the product of two factors is zero, then at least one of the factors must be zero. --- ### **a. \( x^{2} + 8x + 15 = 0 \)** **Step 1: Factor the quadratic equation.** We need to find two numbers that multiply to **15** (the constant term) and add up to **8** (the coefficient of \( x \)). - The numbers **3** and **5** satisfy this because: - \( 3 \times 5 = 15 \) - \( 3 + 5 = 8 \) **Step 2: Write the factored form.** \[ x^{2} + 8x + 15 = (x + 3)(x + 5) = 0 \] **Step 3: Apply the Zero Product Property.** \[ x + 3 = 0 \quad \text{or} \quad x + 5 = 0 \] **Step 4: Solve for \( x \).** \[ x = -3 \quad \text{or} \quad x = -5 \] **Solution:** \( x = -3 \) and \( x = -5 \) --- ### **b. \( x^{2} - 8x + 12 = 5 \)** **Step 1: Bring the equation to standard quadratic form.** Subtract **5** from both sides: \[ x^{2} - 8x + 12 - 5 = 0 \\ x^{2} - 8x + 7 = 0 \] **Step 2: Factor the quadratic equation.** Find two numbers that multiply to **7** and add up to **-8**. - The numbers **-1** and **-7** work because: - \( (-1) \times (-7) = 7 \) - \( -1 + (-7) = -8 \) **Step 3: Write the factored form.** \[ x^{2} - 8x + 7 = (x - 1)(x - 7) = 0 \] **Step 4: Apply the Zero Product Property.** \[ x - 1 = 0 \quad \text{or} \quad x - 7 = 0 \] **Step 5: Solve for \( x \).** \[ x = 1 \quad \text{or} \quad x = 7 \] **Solution:** \( x = 1 \) and \( x = 7 \) --- ### **c. \( x^{2} - 10x - 11 = 0 \)** **Step 1: Factor the quadratic equation.** We need two numbers that multiply to **-11** and add up to **-10**. - The numbers **-11** and **1** work because: - \( -11 \times 1 = -11 \) - \( -11 + 1 = -10 \) **Step 2: Write the factored form.** \[ x^{2} - 10x - 11 = (x - 11)(x + 1) = 0 \] **Step 3: Apply the Zero Product Property.** \[ x - 11 = 0 \quad \text{or} \quad x + 1 = 0 \] **Step 4: Solve for \( x \).** \[ x = 11 \quad \text{or} \quad x = -1 \] **Solution:** \( x = 11 \) and \( x = -1 \) --- ### **d. \( 49 - x^{2} = 0 \)** **Step 1: Rewrite the equation.** \[ 49 - x^{2} = 0 \\ -x^{2} + 49 = 0 \\ x^{2} = 49 \] **Step 2: Factor the difference of squares.** \[ x^{2} - 49 = 0 \\ (x - 7)(x + 7) = 0 \] **Step 3: Apply the Zero Product Property.** \[ x - 7 = 0 \quad \text{or} \quad x + 7 = 0 \] **Step 4: Solve for \( x \).** \[ x = 7 \quad \text{or} \quad x = -7 \] **Solution:** \( x = 7 \) and \( x = -7 \) --- ### **e. \( (x + 4)(x + 5) - 30 = 0 \)** **Step 1: Expand the expression and bring to standard form.** \[ (x + 4)(x + 5) - 30 = 0 \\ x^{2} + 5x + 4x + 20 - 30 = 0 \\ x^{2} + 9x - 10 = 0 \] **Step 2: Factor the quadratic equation.** Find two numbers that multiply to **-10** and add up to **9**. - The numbers **10** and **-1** work because: - \( 10 \times (-1) = -10 \) - \( 10 + (-1) = 9 \) **Step 3: Write the factored form.** \[ x^{2} + 9x - 10 = (x + 10)(x - 1) = 0 \] **Step 4: Apply the Zero Product Property.** \[ x + 10 = 0 \quad \text{or} \quad x - 1 = 0 \] **Step 5: Solve for \( x \).** \[ x = -10 \quad \text{or} \quad x = 1 \] **Solution:** \( x = -10 \) and \( x = 1 \) --- Each equation has been factored, and the solutions have been found by applying the Zero Product Property.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle these equations effectively, we can factor them, leveraging the zero product property which states that if the product of two factors equals zero, at least one of the factors must be zero. Let's dive into the solutions step-by-step! a. **\( x^{2}+8x+15=0 \)** Factoring gives us \( (x+3)(x+5)=0 \). Setting each factor to zero: \( x+3=0 \) or \( x+5=0 \) leads to \( x=-3 \) or \( x=-5 \). b. **\( x^{2}-8x+12=5 \)** First, rearranging gives \( x^{2}-8x+12-5=0 \) or \( x^{2}-8x+7=0 \). Factoring this results in \( (x-1)(x-7)=0 \). Thus, \( x-1=0 \) or \( x-7=0 \) gives \( x=1 \) or \( x=7 \). c. **\( x^{2}-10x-11=0 \)** Factoring here yields \( (x-11)(x+1)=0 \). Therefore, \( x-11=0 \) or \( x+1=0 \) results in \( x=11 \) or \( x=-1 \). d. **\( 49-x^{2}=0 \)** Rearranging gives \( x^{2}=49 \). This can be factored as \( (x-7)(x+7)=0 \). Hence, \( x-7=0 \) or \( x+7=0 \) results in \( x=7 \) or \( x=-7 \). e. **\( (x+4)(x+5)-30=0 \)** Rearranging gives \( (x+4)(x+5)=30 \). By solving \( (x+4)(x+5)-30=0 \), we need to rewrite it as \( (x+4)(x+5)-30=0 \). So we can try integers that multiply (or involve products) for 30, factoring or iteratively will give us rational solutions. Get cracking on those equations, fellow math adventurer! 🎉

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad