Pregunta
Factor out the greatest common factor. \[ 6 c^{2}-12 c \]
Ask by Franklin Reeves. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression factored with the greatest common factor is \(6c(c - 2)\).
Solución
To factor out the greatest common factor (GCF) from the expression \( 6c^{2} - 12c \), follow these steps:
1. **Identify the GCF of the coefficients:**
- The coefficients are 6 and -12.
- The GCF of 6 and 12 is **6**.
2. **Identify the GCF of the variable terms:**
- The terms are \( c^{2} \) and \( c \).
- The GCF is the lowest power of \( c \), which is **\( c \)**.
3. **Factor out the GCF from each term:**
- **Factor out 6c:**
\[
6c^{2} - 12c = 6c(c) - 6c(2) = 6c(c - 2)
\]
So, the expression factored with the greatest common factor is:
\[
6c(c - 2)
\]
**Final Answer:**
\[
6c(c - 2)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To factor out the greatest common factor (GCF) from the expression \(6c^2 - 12c\), we first identify the GCF of the coefficients (6 and 12) and the common variable factor (both terms have at least one \(c\)). The GCF of 6 and 12 is 6, and the common variable factor is \(c\). Thus, we can factor out \(6c\): \[ 6c(c - 2) \] So the factored form of \(6c^2 - 12c\) is \(6c(c - 2)\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium