Pregunta
upstudy study bank question image url

8:43 Converting Standard Form - Slope-I... Vectored Instruction Follow the given steps to solve for \( \mathbf{y} \). Step 1: Move the \( x \) term to the other side by performing the opposite operation to BOTH sides. \[ \begin{array}{l} -7 x+y=-17 \\ +7 x \\ \hline \end{array} \]

Ask by Pena Reeves. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve for \( y \) in the equation \( -7x + y = -17 \), add \( 7x \) to both sides to get \( y = 7x - 17 \).

Solución

Let's follow the steps to solve for \( y \) in the equation given in standard form. ### Step 1: Move the \( x \) term to the other side The original equation is: \[ -7x + y = -17 \] To isolate \( y \), we need to move the \( -7x \) term to the other side by adding \( 7x \) to both sides of the equation. This gives us: \[ y = -17 + 7x \] ### Step 2: Rearranging the equation Now, we can rearrange the equation to express it in slope-intercept form \( y = mx + b \), where \( m \) is the slope and \( b \) is the y-intercept. The equation can be rewritten as: \[ y = 7x - 17 \] ### Conclusion The equation \( y = 7x - 17 \) is now in slope-intercept form, where the slope \( m = 7 \) and the y-intercept \( b = -17 \). If you have any further questions or need additional steps, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When we move the \( x \) term across the equation by adding \( 7x \) to both sides, the equation transforms into a more workable form. This is the first step towards isolating \( y \). You should end up with \( y = 7x - 17 \), which now clearly shows the slope-intercept form of the equation, where the slope is \( 7 \) and the y-intercept is \( -17 \). As you tackle these transformations, remember that mistakes often happen when people forget to apply the same operation to both sides or make errors in sign. Writing each step clearly can help avoid confusion! Double-checking your work can be a lifesaver—make it a habit!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad