Pregunta
upstudy study bank question image url

\begin{tabular}{l|l} 5. A b-foot ladder touches the side of a & 6 . \\ building at a point 5 feet above the ground. \\ At what height would a 15 -foot ladder touch \\ the building if it makes the same angle with & \\ the ground as the shorter ladder? \end{tabular}

Ask by Brewer Gibson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height at which a 15-foot ladder touches the building is \( \frac{75}{b} \) feet, where \( b \) is the length of the shorter ladder.

Solución

To solve this problem, we can use trigonometry to find the height at which a 15-foot ladder would touch the building if it makes the same angle with the ground as the shorter ladder. Let's denote: - \( b \) as the length of the shorter ladder, - \( h \) as the height at which the 15-foot ladder touches the building. Given: - The shorter ladder touches the building at a point 5 feet above the ground. We can use the tangent function to relate the angle, the height of the shorter ladder, and the length of the shorter ladder. The tangent of an angle is equal to the ratio of the opposite side (height) to the adjacent side (length). For the shorter ladder: \[ \tan(\theta) = \frac{5}{b} \] For the 15-foot ladder: \[ \tan(\theta) = \frac{h}{15} \] Since the angle is the same for both ladders, we can set the two expressions equal to each other: \[ \frac{5}{b} = \frac{h}{15} \] Now, we can solve for \( h \) to find the height at which the 15-foot ladder would touch the building. Solve the equation by following steps: - step0: Solve for \(h\): \(\frac{5}{b}=\frac{h}{15}\) - step1: Swap the sides: \(\frac{h}{15}=\frac{5}{b}\) - step2: Multiply both sides of the equation by \(15:\) \(\frac{h}{15}\times 15=\frac{5}{b}\times 15\) - step3: Multiply the terms: \(h=\frac{5\times 15}{b}\) - step4: Evaluate: \(h=\frac{75}{b}\) The height at which a 15-foot ladder would touch the building if it makes the same angle with the ground as the shorter ladder is given by the expression \( h = \frac{75}{b} \), where \( b \) is the length of the shorter ladder.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the height at which the 15-foot ladder will touch the building, we can use the concept of similar triangles since both ladders make the same angle with the ground. The height reached by the first ladder (5 feet) and its length (b feet) gives us a ratio that we can set equal to the ratio for the second ladder (15 feet). Using the similar triangles relationship: \[ \frac{h_1}{b} = \frac{h_2}{15} \] where \(h_1 = 5\) (the height reached by the first ladder) and \(h_2\) is the height reached by the second ladder. To calculate \(b\) (the length of the shorter ladder), we can think of this as a right triangle problem. The relationship can be further simplified to: \[ h_2 = \frac{h_1}{b} \times 15 \] If we assume \(b\) is a constant in relation to \(h_1\), let's say \(b = x\), then with \(h_1 = 5\), we can calculate the combined ratios and eventually find \(h_2\). Solving that gives you a similar height based on the properties of the triangles. If you need specific numbers, we can assign values and find exact ratios. In the previous relation, \[ \frac{5}{b} = \frac{h_2}{15} \] which simplifies our task. If we want numerical specifics, more information about \(b\) is needed to finalize the answer!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad