If \( f(x) \) is not defined at \( c \), then \( f(x) \) cannot be continuous on any interval. True False SUBMIT ANSWER
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
If \( f(x) \) is not defined at \( c \), it's true that \( f(x) \) cannot be continuous at that point since continuity requires that the function be defined at that point. However, \( f(x) \) could still be continuous on intervals that do not include \( c \). So, the correct answer is **False**. There can be intervals around \( c \) where \( f(x) \) is indeed continuous, as long as those intervals do not include the undefined point.