A football field is sloped from the center toward the sides for drainage. The height \( h \), in feet, of the field, \( x \) feet from the side, is given by \( h=-0.00075 x^{2}+0.06 x \). Find the height of the field a distance of 35 feet from the side. The height of the field is \( \square \) feet. (Round to the nearest tenth as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the height of the field a distance of 35 feet from the side, we can plug \( x = 35 \) into the given height equation \( h = -0.00075x^2 + 0.06x \). Calculating step by step: 1. First, calculate \( x^2 \): \[ 35^2 = 1225. \] 2. Now, substitute \( x \) into the equation: \[ h = -0.00075(1225) + 0.06(35). \] 3. Calculate \( -0.00075(1225) \): \[ -0.00075 \times 1225 = -0.91875. \] 4. Now calculate \( 0.06(35) \): \[ 0.06 \times 35 = 2.1. \] 5. Finally, add the two results together: \[ h = -0.91875 + 2.1 = 1.18125. \] Rounding to the nearest tenth, the height of the field is approximately **1.2 feet**.