Pregunta
upstudy study bank question image url

A person invests 7500 dollars in a bank. The bank pays \( 5.5 \% \) interest compounded annually. To the nearest tenth of a year, how long must the person leave the money in the bank until it reaches 14300 dollars? \[ A=P\left(1+\frac{r}{n}\right)^{n t} \]

Ask by Clarke Tucker. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The person needs to leave the money in the bank for approximately 12.1 years to reach $14,300.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To solve the problem using the formula for compound interest \( A = P\left(1 + \frac{r}{n}\right)^{nt} \), we can plug in the values. Here, \( A = 14300 \), \( P = 7500 \), \( r = 0.055 \), and \( n = 1 \) (since interest is compounded annually). Rearranging the formula to solve for \( t \): 1. Set up the equation: \[ 14300 = 7500\left(1 + 0.055\right)^{1t} \] 2. Simplifying gives: \[ 14300 = 7500(1.055)^{t} \] 3. Divide both sides by 7500: \[ \frac{14300}{7500} = (1.055)^{t} \] \[ 1.9067 = (1.055)^{t} \] 4. Taking the natural logarithm: \[ \ln(1.9067) = t \cdot \ln(1.055) \] 5. Solve for \( t \): \[ t = \frac{\ln(1.9067)}{\ln(1.055)} \approx \frac{0.644}{0.053} \approx 12.1 \] So, the person must leave the money in the bank for approximately 12.1 years. Investing has become a pivotal part of financial planning, and understanding how compound interest works can significantly impact long-term savings. You’re essentially “earning interest on interest,” which means the sooner you start saving, the more you benefit! This concept was first popularized in the 17th century by mathematicians like Jacob Bernoulli, who believed that compound interest could demonstrate the concept of exponential growth. When working with compound interest problems, one common mistake is forgetting to convert percentages into decimal form. Always remember to divide the percentage rate by 100 (e.g., \(5.5\% = 0.055\)). Also, ensuring that the compounding periods and ‘t’ (time) units match is crucial. A little oversight here can lead to miscalculations!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad