Pregunta
upstudy study bank question image url

A stone of mass 10 kg . is suspended by a rope that can not afford tension more than 30 . , then the least time needed to ciise the stone 20 m . vertically upward from rest equals second.
(a)
(b)
© 2
(d)
A bullet is fired horizontally with speed . at a vertical fixed barrier of thickness 32 cm . it penetrates the barrier and lose of its speed If the barrier resistance ., then the mass of the bullet = gm.
(a) 5
(b) 10
© 12
(d) 15
A bullet of mass 7 gm . is fired horizontally from a pistol with speed . at a wooden vertical barrier. It imbedded in it 12.25 cm . befor it stopped, then the resistance of the wood to the bullet equals
(a) 17.15 N
(b) 175 N .
© .
(d) .

Ask by Peterson Vargas. in Egypt
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Cannot lift the stone with the given tension. The bullet’s mass is 15 grams, and the wood’s resistance is 1715 Newtons.

Solución

Let’s solve each problem step by step.

Problem 1: Stone Suspended by a Rope

Given:
  • Mass of the stone,
  • Maximum tension the rope can afford, (which is equivalent to )
  • Distance to be raised,
Step 1: Calculate the net force acting on the stone.
The maximum tension in the rope must overcome both the weight of the stone and provide the necessary force to accelerate it upwards.
The weight of the stone is given by:
The net force can be expressed as:
Where is the tension in the rope.
Step 2: Set up the equation for maximum tension.
Since the maximum tension is :
This implies:
This indicates that the tension is not sufficient to lift the stone.
Step 3: Calculate the acceleration.
Using Newton’s second law:
We can rearrange this to find :
This negative acceleration indicates that the stone cannot be lifted with the given tension.
Since the stone cannot be lifted, we cannot calculate the time needed to raise it.

Problem 2: Bullet Fired at a Barrier

Given:
  • Initial speed of the bullet,
  • Thickness of the barrier,
  • Speed loss, of its speed
  • Resistance of the barrier,
Step 1: Calculate the final speed of the bullet after penetrating the barrier.
The final speed is:
Step 2: Calculate the deceleration.
Using the formula:
Rearranging gives:
Substituting the values:
Step 3: Calculate the mass of the bullet.
Using Newton’s second law:
Where :
We will calculate first and then find .

Problem 3: Bullet Embedded in Wood

Given:
  • Mass of the bullet,
  • Initial speed,
  • Distance embedded,
Step 1: Calculate the deceleration.
Using the same formula as before:
Since the bullet stops, :
Rearranging gives:
Step 2: Calculate the resistance of the wood.
Using :
Now, let’s calculate the values for Problems 2 and 3.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Convert the expressions:
  • step4: Evaluate the power:
  • step5: Multiply by the reciprocal:
  • step6: Reduce the numbers:
  • step7: Multiply the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Subtract the numbers:
  • step4: Convert the expressions:
  • step5: Multiply by the reciprocal:
  • step6: Reduce the numbers:
  • step7: Multiply the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Reduce the fraction:
  • step3: Rewrite the fraction:

Problem 1: Stone Suspended by a Rope

The stone cannot be lifted with the given tension of 30 N, as the weight of the stone (98 N) exceeds the maximum tension. Therefore, we cannot calculate the time needed to raise the stone.

Problem 2: Bullet Fired at a Barrier

  1. Deceleration:
  2. Mass of the bullet: Thus, the mass of the bullet is 15 g.

Problem 3: Bullet Embedded in Wood

  1. Deceleration:
  2. Resistance of the wood: Thus, the resistance of the wood to the bullet is 1715 N.

Summary of Answers:

  1. Stone Problem: Cannot be lifted.
  2. Bullet Mass: 15 g
  3. Resistance of Wood: 1715 N

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the first problem regarding the stone, you can use the formula for tension, which is the combination of gravitational force and the force required to accelerate the stone. The maximum tension that the rope can handle is , which translates to in terms of force. Applying Newton’s second law and using kinematic equations, you can derive the time needed to lift the stone.
For the bullet problems, recall the principle of conservation of momentum and the work-energy principle. The bullet loses a significant portion of its speed when it penetrates the barrier, giving us clues to find its mass. The resistance force from the barrier can be computed using the force formula where can be found using the bullet’s deceleration through the wooden block. Using the distance and initial speed, you can determine the resistance force and ultimately derive the mass of the bullet as well.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad