Simplify. Assume \( d \) is greater than or equal to zero. \[ \sqrt{45 d^{10}} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify \( \sqrt{45 d^{10}} \), we can break it down into its components. Start with the number inside the square root: \[ \sqrt{45 d^{10}} = \sqrt{45} \cdot \sqrt{d^{10}} \] First, simplify \( \sqrt{45} \). We can factor it as follows: \[ 45 = 9 \cdot 5 = 3^2 \cdot 5 \] So, \[ \sqrt{45} = \sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5} \] Next, simplify \( \sqrt{d^{10}} \): \[ \sqrt{d^{10}} = d^{10/2} = d^5 \] Now, combine both simplified parts: \[ \sqrt{45 d^{10}} = 3\sqrt{5} \cdot d^5 \] Thus, the final simplified expression is: \[ 3d^5\sqrt{5} \]