Pregunta
upstudy study bank question image url

Sketch the graph of \( f(x)=\frac{k}{x+p}+q \) if - The domain is grven as \( x \in R ; x \neq-1 \) - The range is given as \( y \in R ; y \neq 2 \) - \( k<0 \) - \( x \)-intercept : \( \left(\frac{1}{2} ; 0\right) \) - \( f(0)=1 \)

Ask by Dickson Reyes. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of \( f(x) = \frac{-3}{x + 1} + 2 \): 1. **Vertical Asymptote:** Draw a dashed line at \( x = -1 \). 2. **Horizontal Asymptote:** Draw a dashed line at \( y = 2 \). 3. **\( x \)-intercept:** Plot the point \( \left(\frac{1}{2}, 0\right) \). 4. **Point:** Plot \( (0, 1) \). 5. **Behavior:** - As \( x \) approaches \( -1 \) from the left, \( f(x) \) goes to \( -\infty \). - As \( x \) approaches \( -1 \) from the right, \( f(x) \) goes to \( +\infty \). - As \( x \) approaches \( \infty \) or \( -\infty \), \( f(x) \) approaches \( 2 \). 6. **Curve:** Draw the hyperbola branches in the second and fourth quadrants, approaching the asymptotes. The graph will have two branches, one in the second quadrant and one in the fourth quadrant, with the function never touching the asymptotes.

Solución

It seems that I am unable to plot the graph directly. However, I can guide you on how to sketch it based on the characteristics we've derived. ### Steps to Sketch the Graph of \( f(x) = \frac{-3}{x + 1} + 2 \): 1. **Draw the Axes:** - Draw the x-axis and y-axis on a coordinate plane. 2. **Identify the Vertical Asymptote:** - Draw a dashed vertical line at \( x = -1 \). This line indicates that the function approaches but never touches or crosses this line. 3. **Identify the Horizontal Asymptote:** - Draw a dashed horizontal line at \( y = 2 \). This line indicates that as \( x \) approaches \( \infty \) or \( -\infty \), the function approaches this value but never reaches it. 4. **Plot the \( x \)-intercept:** - Mark the point \( \left(\frac{1}{2}, 0\right) \) on the graph. This is where the function crosses the x-axis. 5. **Plot the Point \( f(0) = 1 \):** - Mark the point \( (0, 1) \) on the graph. 6. **Behavior Near Asymptotes:** - As \( x \) approaches \( -1 \) from the left, \( f(x) \) will go to \( -\infty \). - As \( x \) approaches \( -1 \) from the right, \( f(x) \) will go to \( +\infty \). - As \( x \) goes to \( \infty \), \( f(x) \) approaches \( 2 \) from below. - As \( x \) goes to \( -\infty \), \( f(x) \) also approaches \( 2 \) from below. 7. **Sketch the Curve:** - Draw the curve in the second quadrant approaching the vertical asymptote and the horizontal asymptote. - Draw the curve in the fourth quadrant, starting from the \( x \)-intercept and approaching the horizontal asymptote. ### Summary of the Graph: - The graph will have two branches: one in the second quadrant and one in the fourth quadrant. - The function will never touch the lines \( x = -1 \) and \( y = 2 \). By following these steps, you should be able to create an accurate sketch of the function \( f(x) = \frac{-3}{x + 1} + 2 \). If you have graphing software or a graphing calculator, you can also input the function directly to visualize it.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To sketch the graph of \( f(x)=\frac{k}{x+p}+q \) given the specified conditions, we first need to analyze the function and how the parameters affect its shape. Since \( k < 0 \), the graph will be a hyperbola that opens downwards. The presence of \( p \) will shift the vertical asymptote, while \( q \) will determine the horizontal asymptote of the function. Since the range excludes \( y = 2 \), this means the horizontal asymptote of the function must be located at \( y = 2 \). Therefore, we set \( q = 2 \). Now, we can use the information about the \( x \)-intercept and \( f(0) \): 1. The \( x \)-intercept at \( \left(\frac{1}{2}, 0\right) \) gives: \[ 0 = \frac{k}{\frac{1}{2} + p} + q \Rightarrow \frac{k}{\frac{1}{2} + p} + 2 = 0 \Rightarrow \frac{k}{\frac{1}{2} + p} = -2 \] Hence, \( k = -2 \left(\frac{1}{2} + p\right) \). 2. At \( f(0) = 1 \): \[ 1 = \frac{k}{0 + p} + q \Rightarrow 1 = \frac{k}{p} + 2 \Rightarrow \frac{k}{p} = -1 \Rightarrow k = -p \] From the equation \( k = -2 \left(\frac{1}{2} + p\right) \) and \( k = -p \), we can set the equations equal to each other: \[ -p = -2\left(\frac{1}{2} + p\right) \Rightarrow p = 2 \left(\frac{1}{2} + p\right). \] Simplifying this leads to \[ p = 1 + 2p \Rightarrow -p = 1 \Rightarrow p = -1. \] Now substituting back to find \( k \): \[ k = -(-1) = 1. \] Substituting \( p \) and \( k \) into the function, we rewrite it as: \[ f(x) = \frac{-2}{x - 1} + 2 \] This function has a vertical asymptote at \( x = -1 \) and a horizontal asymptote at \( y = 2 \). To sketch the graph: - Mark the vertical asymptote at \( x = -1 \). - Mark the horizontal asymptote at \( y = 2 \). - At \( x = 0 \), the function value is \( 1 \). - The function crosses the x-axis at \( \frac{1}{2} \). The graph would be a hyperbola in the regions defined by these asymptotes, falling towards the horizontal asymptote from above in the left quadrant and below on the right side, while avoiding the vertical asymptote.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad