Pregunta

If the function \( g(x) = x^{2} + 5 \) has an inverse, determine the domain of the inverse function.

Ask by Park Powell. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of the inverse function is all real numbers y where y is greater than or equal to 5, which is [5, ∞).

Solución

To determine the domain of the inverse function of \( g(x) = x^{2} + 5 \), let's follow these steps: 1. **Understand the Original Function:** - \( g(x) = x^{2} + 5 \) is a parabola that opens upward with its vertex at \( (0, 5) \). - **Domain of \( g(x) \):** All real numbers (\( \mathbb{R} \)). - **Range of \( g(x) \):** Since the parabola opens upward, the minimum value is \( 5 \). Thus, the range is \( [5, \infty) \). 2. **Invertibility:** - For \( g(x) \) to have an inverse, it must be **one-to-one** (bijective). - The original function \( g(x) = x^{2} + 5 \) is **not** one-to-one over all real numbers because it fails the horizontal line test. - To make it invertible, we typically **restrict the domain**. For example: - If we restrict \( g(x) \) to \( x \geq 0 \), the function becomes one-to-one. - Similarly, restricting to \( x \leq 0 \) also makes it one-to-one. - Regardless of the restriction, the **range remains** \( [5, \infty) \). 3. **Domain of the Inverse Function:** - The domain of the inverse function \( g^{-1}(y) \) is the **range of the original function \( g(x) \)**. - Therefore, the domain of \( g^{-1}(y) \) is \( [5, \infty) \). **Final Answer:** All real numbers y with y at least five. In other words, the domain is [ 5,  ∞ ).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the domain of the inverse function of \( g(x) = x^{2} + 5 \), we must first note that this function is not one-to-one over its entire domain because it is a parabola opening upwards. To ensure it has an inverse, we restrict it to only one side of its vertex. For example, if we restrict \( g \) to \( x \geq 0 \), the function becomes one-to-one. The output of \( g(x) \) for this restriction starts at \( g(0) = 5 \) and goes to infinity. Thus, the domain of the inverse function \( g^{-1}(x) \) is \( [5, \infty) \). When finding the inverse function, remember to swap variables and solve for \( x \). In this case, if you set \( y = g(x) = x^{2} + 5 \) and solve for \( x \), you'll find that for \( y \geq 5 \) (reflecting our earlier restriction), the inverse function is \( g^{-1}(y) = \sqrt{y - 5} \). This little step ensures everything is nice and neat—voilà!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad