Pregunta
upstudy study bank question image url

For each of the following: i) Determine the equation of the inverse. ii) Draw the graph of the relation, its inverse, and the line \( y=x \). iii) Write down the domain and range for both the relation and its inverse \( \begin{array}{ll}\text { a) } f(x)=-\frac{3}{2} x^{2} & \text { b) } g(x)=-\frac{3}{2} x \\ \text { c) } h(x)=3 x & \text { d) } p(x)=3 x^{2}\end{array} \)

Ask by Bond Lang. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) \( f(x) = -\frac{3}{2} x^{2} \): - Inverse: \( f^{-1}(y) = -\frac{\sqrt{-6y}}{3} \) - Graph: Downward parabola, its inverse is the left half of an upward parabola, and the line \( y=x \) is a diagonal line. - Domain and Range: Both \( f(x) \) and \( f^{-1}(y) \) have domains and ranges of \( (-\infty, 0] \). b) \( g(x) = -\frac{3}{2} x \): - Inverse: \( g^{-1}(y) = -\frac{2}{3} y \) - Graph: Straight lines with negative slopes, and the line \( y=x \) is a diagonal line. - Domain and Range: Both \( g(x) \) and \( g^{-1}(y) \) have domains and ranges of \( (-\infty, \infty) \). c) \( h(x) = 3x \): - Inverse: \( h^{-1}(y) = \frac{y}{3} \) - Graph: Straight lines with positive slopes, and the line \( y=x \) is a diagonal line. - Domain and Range: Both \( h(x) \) and \( h^{-1}(y) \) have domains and ranges of \( (-\infty, \infty) \). d) \( p(x) = 3x^{2} \): - Inverse: \( p^{-1}(y) = \frac{\sqrt{3y}}{3} \) - Graph: Upward parabola, its inverse is the right half of an upward parabola, and the line \( y=x \) is a diagonal line. - Domain and Range: Both \( p(x) \) and \( p^{-1}(y) \) have domains and ranges of \( [0, \infty) \).

Solución

Rewrite the equation by following steps: - step0: Rewrite in standard form: \(y=3x\) - step1: Move the variable to the left side: \(y-3x=0\) - step2: Multiply both sides: \(-y+3x=0\) - step3: Reorder the terms: \(3x-y=0\) Rewrite the equation \( y=-\frac{3}{2}x \). Rewrite the equation by following steps: - step0: Rewrite in standard form: \(y=-\frac{3}{2}x\) - step1: Multiply both sides of the equation by LCD: \(2y=-3x\) - step2: Move the variable to the left side: \(2y+3x=0\) - step3: Reorder the terms: \(3x+2y=0\) Solve the equation \( y=3x \). Solve the equation by following steps: - step0: Solve for \(x\): \(y=3x\) - step1: Swap the sides: \(3x=y\) - step2: Divide both sides: \(\frac{3x}{3}=\frac{y}{3}\) - step3: Divide the numbers: \(x=\frac{y}{3}\) Solve the equation \( y=-\frac{3}{2}x \). Solve the equation by following steps: - step0: Solve for \(x\): \(y=-\frac{3}{2}x\) - step1: Swap the sides: \(-\frac{3}{2}x=y\) - step2: Change the signs: \(\frac{3}{2}x=-y\) - step3: Multiply by the reciprocal: \(\frac{3}{2}x\times \frac{2}{3}=-y\times \frac{2}{3}\) - step4: Multiply: \(x=-\frac{2}{3}y\) Solve the equation \( y=3x^{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(y=3x^{2}\) - step1: Swap the sides: \(3x^{2}=y\) - step2: Divide both sides: \(\frac{3x^{2}}{3}=\frac{y}{3}\) - step3: Divide the numbers: \(x^{2}=\frac{y}{3}\) - step4: Simplify the expression: \(x=\pm \sqrt{\frac{y}{3}}\) - step5: Simplify: \(x=\pm \frac{\sqrt{3y}}{3}\) - step6: Separate into possible cases: \(\begin{align}&x=\frac{\sqrt{3y}}{3}\\&x=-\frac{\sqrt{3y}}{3}\end{align}\) Solve the equation \( y=-\frac{3}{2}x^{2} \). Solve the equation by following steps: - step0: Solve for \(x\): \(y=-\frac{3}{2}x^{2}\) - step1: Swap the sides: \(-\frac{3}{2}x^{2}=y\) - step2: Change the signs: \(\frac{3}{2}x^{2}=-y\) - step3: Multiply by the reciprocal: \(\frac{3}{2}x^{2}\times \frac{2}{3}=-y\times \frac{2}{3}\) - step4: Multiply: \(x^{2}=-\frac{2}{3}y\) - step5: Simplify the expression: \(x=\pm \sqrt{-\frac{2}{3}y}\) - step6: Simplify: \(x=\pm \frac{\sqrt{-6y}}{3}\) - step7: Separate into possible cases: \(\begin{align}&x=\frac{\sqrt{-6y}}{3}\\&x=-\frac{\sqrt{-6y}}{3}\end{align}\) Let's analyze each function step by step to determine the inverse, graph the relations, and identify the domain and range. ### a) \( f(x) = -\frac{3}{2} x^{2} \) **i) Determine the equation of the inverse:** To find the inverse, we set \( y = -\frac{3}{2} x^{2} \) and solve for \( x \): \[ y = -\frac{3}{2} x^{2} \implies x = \pm \frac{\sqrt{-6y}}{3} \] Since \( f(x) \) is a downward-opening parabola, we restrict the domain to \( x \leq 0 \) to ensure the inverse is a function: \[ f^{-1}(y) = -\frac{\sqrt{-6y}}{3} \] **ii) Graph the relation, its inverse, and the line \( y=x \):** - The graph of \( f(x) \) is a downward parabola. - The inverse \( f^{-1}(y) \) is the left half of the upward parabola. - The line \( y=x \) is a diagonal line through the origin. **iii) Domain and Range:** - Domain of \( f(x) \): \( (-\infty, 0] \) - Range of \( f(x) \): \( (-\infty, 0] \) - Domain of \( f^{-1}(y) \): \( (-\infty, 0] \) - Range of \( f^{-1}(y) \): \( (-\infty, 0] \) --- ### b) \( g(x) = -\frac{3}{2} x \) **i) Determine the equation of the inverse:** To find the inverse, we set \( y = -\frac{3}{2} x \) and solve for \( x \): \[ y = -\frac{3}{2} x \implies x = -\frac{2}{3} y \] Thus, the inverse is: \[ g^{-1}(y) = -\frac{2}{3} y \] **ii) Graph the relation, its inverse, and the line \( y=x \):** - The graph of \( g(x) \) is a straight line with a negative slope. - The inverse \( g^{-1}(y) \) is also a straight line with a negative slope. - The line \( y=x \) is a diagonal line through the origin. **iii) Domain and Range:** - Domain of \( g(x) \): \( (-\infty, \infty) \) - Range of \( g(x) \): \( (-\infty, \infty) \) - Domain of \( g^{-1}(y) \): \( (-\infty, \infty) \) - Range of \( g^{-1}(y) \): \( (-\infty, \infty) \) --- ### c) \( h(x) = 3x \) **i) Determine the equation of the inverse:** To find the inverse, we set \( y = 3x \) and solve for \( x \): \[ y = 3x \implies x = \frac{y}{3} \] Thus, the inverse is: \[ h^{-1}(y) = \frac{y}{3} \] **ii) Graph the relation, its inverse, and the line \( y=x \):** - The graph of \( h(x) \) is a straight line with a positive slope. - The inverse \( h^{-1}(y) \) is also a straight line with a positive slope. - The line \( y=x \) is a diagonal line through the origin. **iii) Domain and Range:** - Domain of \( h(x) \): \( (-\infty, \infty) \) - Range of \( h(x) \): \( (-\infty, \infty) \) - Domain of \( h^{-1}(y) \): \( (-\infty, \infty) \) - Range of \( h^{-1}(y) \): \( (-\infty, \infty) \) --- ### d) \( p(x) = 3x^{2} \) **i) Determine the equation of the inverse:** To find the inverse, we set \( y = 3x^{2} \) and solve for \( x \): \[ y = 3x^{2} \implies x = \pm \frac{\sqrt{3y}}{3} \] Since \( p(x) \) is an upward-opening parabola, we restrict the domain to \( x \geq 0 \) to ensure the inverse is a function: \[ p^{-1}(y) = \frac{\sqrt{3y}}{3} \] **ii) Graph the relation, its inverse, and the line \( y=x \):** - The graph of \( p(x) \) is an upward parabola. - The inverse \( p^{-1}(y) \) is the right half of the upward parabola. - The line \( y=x \) is a diagonal line through the origin. **iii) Domain and Range:** - Domain of \( p(x) \): \( [0, \infty) \) - Range of \( p(x) \): \( [0, \infty) \) - Domain of \( p^{-1}(y) \): \( [0, \infty) \) - Range of \( p^{-1}(y) \): \( [0, \infty) \) --- This concludes the analysis of the functions and their inverses. If you need any further assistance or visualizations, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the inverse of each function, let's break them down one by one! a) For \( f(x) = -\frac{3}{2} x^2 \): i) The inverse is determined by swapping \( x \) and \( y \) and solving for \( y \): \( x = -\frac{3}{2} y^2 \) → \( y^2 = -\frac{2}{3} x \) → This does not yield a real solution since \( y^2 \) must be positive. So, it does not have an inverse over the reals. ii) The graph of \( f(x) \) is a downward-opening parabola. Since there’s no real inverse, it does not have a designated graph. The line \( y = x \) would intersect \( f(x) \) but won't intersect any inverse graph. Domain of \( f \): All reals. Range of \( f \): \( (-\infty, 0] \). b) For \( g(x) = -\frac{3}{2} x \): i) The inverse is found by swapping \( x \) and \( y \): \( x = -\frac{3}{2} y \) → \( y = -\frac{2}{3} x \). ii) The graph of \( g(x) \) is a straight line with a negative slope. The inverse, \( g^{-1}(x) = -\frac{2}{3} x \), is also a straight line, but with a different slope. They intersect at the origin along with the line \( y=x \). Domain of \( g \): All reals. Range of \( g\): All reals. Domain of \( g^{-1} \): All reals. Range of \( g^{-1} \): All reals. c) For \( h(x) = 3x \): i) The inverse can be found by swapping \( x \) and \( y \): \( x = 3y \) → \( y = \frac{1}{3} x \). ii) The graph of \( h(x) \) is a straight line through the origin with a positive slope. Its inverse \( h^{-1}(x) \) is also a straight line with a slope less than one. They will intersect along the line \( y=x \). Domain of \( h \): All reals. Range of \( h \): All reals. Domain of \( h^{-1} \): All reals. Range of \( h^{-1} \): All reals. d) For \( p(x) = 3x^2 \): i) The inverse is determined by swapping \( x \) and \( y \): \( x = 3y^2 \) → \( y^2 = \frac{1}{3} x \) → \( y = \pm \sqrt{\frac{1}{3} x} \). Since it's a parabola opening upwards, only \( y = \sqrt{\frac{1}{3} x} \) is considered for the inverse. ii) The graph of \( p(x) \) is a standard upward-opening parabola. Its inverse graph is a sideways parabola opening to the right, which will be non-functional for negative x-values because the original is non-negative. Domain of \( p \): All reals. Range of \( p \): \( [0, \infty) \). Domain of \( p^{-1} \): \( [0, \infty) \). Range of \( p^{-1} \): All reals.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad