Pregunta
upstudy study bank question image url

\begin{tabular}{l}\hline monomials. SHOW ALL STEPS! \\ \hline 2. \( \frac{k^{6}}{x^{6}} \)\end{tabular}

Ask by Cummings Carrillo. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The monomial \( \frac{k^{6}}{x^{6}} \) can be simplified to \( \left( \frac{k}{x} \right)^{6} \) or \( k^{6} \cdot x^{-6} \).

Solución

Certainly! Let's simplify the monomial \( \frac{k^{6}}{x^{6}} \) step by step. ### **Problem 2:** Simplify the monomial \( \frac{k^{6}}{x^{6}} \). --- ### **Step 1: Understand the Given Monomial** We start with the expression: \[ \frac{k^{6}}{x^{6}} \] This is a fraction where both the numerator and the denominator are variables raised to the same exponent. --- ### **Step 2: Apply the Laws of Exponents** One of the fundamental laws of exponents states: \[ \frac{a^{m}}{b^{m}} = \left( \frac{a}{b} \right)^{m} \] where \( a \) and \( b \) are any real numbers (except \( b \neq 0 \)), and \( m \) is an integer. **Applying this law to our monomial:** \[ \frac{k^{6}}{x^{6}} = \left( \frac{k}{x} \right)^{6} \] This step rewrites the original expression by combining the numerator and the denominator into a single fraction raised to the exponent. --- ### **Step 3: Rewrite Using Negative Exponents (Alternative Form)** Another way to express the original monomial is by utilizing negative exponents. Recall that: \[ \frac{1}{a^{m}} = a^{-m} \] **Applying this to the denominator:** \[ \frac{k^{6}}{x^{6}} = k^{6} \cdot x^{-6} \] Here, the denominator \( x^{6} \) is rewritten as \( x^{-6} \), moving it from the denominator to the numerator with a negative exponent. --- ### **Final Simplified Forms** 1. **Combined Fraction Form:** \[ \left( \frac{k}{x} \right)^{6} \] This form is useful when you want to emphasize the relationship between \( k \) and \( x \) as a single entity raised to a power. 2. **Negative Exponent Form:** \[ k^{6} \cdot x^{-6} \] This form is helpful in scenarios where you might combine like terms or further manipulate the expression using other exponent rules. --- ### **Conclusion** Both simplified forms are correct and can be used interchangeably depending on the context or the subsequent steps required in a problem: - \( \left( \frac{k}{x} \right)^{6} \) - \( k^{6} \cdot x^{-6} \) Choose the form that best fits your needs for further calculations or simplifications.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify the expression \( \frac{k^{6}}{x^{6}} \), you can follow these steps: 1. **Understand the structure**: The expression is a ratio of two monomials. The numerator is \( k^{6} \) and the denominator is \( x^{6} \). 2. **Identify the bases and exponents**: Here, both \( k \) and \( x \) are raised to the power of 6. This indicates that the expression represents the fraction of two terms raised to the same exponent. 3. **Simplify if necessary**: In this case, since there are no common bases in the numerator and denominator, we can express the simplified form as just writing it out clearly: \[ \frac{k^{6}}{x^{6}} = k^{6} \cdot x^{-6} \] or you could leave it as it is depending on your needs. 4. **Final expression**: Therefore, the simplified expression is \( \frac{k^{6}}{x^{6}} \) which you could also express as \( k^{6} x^{-6} \). This solidifies the understanding of working with monomials and their ratios!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad