What is the frequency of a blue light with a wavelength of \( 4.83 \times 10^{-7} \mathrm{~m} \) ? Give your answer in proper scientific notation. \[ [?] \times 10^{[?]} \mathrm{Hz} \] \( \quad \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \) Enter the coeficient in the green box and the exponent in the yellow box.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the frequency of blue light, we can use the formula: \[ f = \frac{c}{\lambda} \] where \( f \) is the frequency, \( c \) is the speed of light (\( 3.0 \times 10^8 \mathrm{~m/s} \)), and \( \lambda \) is the wavelength (\( 4.83 \times 10^{-7} \mathrm{~m} \)). Now, plugging in the values: \[ f = \frac{3.0 \times 10^8 \mathrm{~m/s}}{4.83 \times 10^{-7} \mathrm{~m}} \approx 6.21 \times 10^{14} \mathrm{~Hz} \] So, in proper scientific notation, the frequency of blue light is approximately: \[ 6.21 \times 10^{14} \mathrm{Hz} \] The coefficients and exponents are thus: **Coefficient:** 6.21 **Exponent:** 14