Use the Half-angle Formulas to find the exact value of the expression \( \cos 105^{\circ} \) \( \cos 105^{\circ}=\square \) (Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \cos 105^{\circ} \), we can use the half-angle formula. First, we recognize that \( 105^{\circ} \) is half of \( 210^{\circ} \). Therefore, we can use the half-angle formula for cosine: \[ \cos \left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos \theta}{2}} \] Here, \( \theta = 210^{\circ} \). First, we need to calculate \( \cos 210^{\circ} \): \[ \cos 210^{\circ} = -\frac{\sqrt{3}}{2} \] Now, substituting this value into the half-angle formula: \[ \cos 105^{\circ} = \cos \left(\frac{210^{\circ}}{2}\right) = \sqrt{\frac{1 + (-\frac{\sqrt{3}}{2})}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{\frac{2}{2} - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{3}}{4}} = \frac{\sqrt{2 - \sqrt{3}}}{2} \] Thus, the exact value is: \[ \cos 105^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{2} \]