Use the half-angle formulas to find the exact value of the trigonometric function \( \sin 22.5^{\circ} \). \( \sin 22.5^{\circ}=\square \) (Type an exact answer, using radicals as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \( \sin 22.5^{\circ} \), we can use the half-angle formula for sine: \[ \sin \left( \frac{\theta}{2} \right) = \sqrt{ \frac{1 - \cos \theta}{2} } \] For \( 22.5^{\circ} \), we can set \( \theta = 45^{\circ} \). Therefore, we have \[ \sin 22.5^{\circ} = \sin \left( \frac{45^{\circ}}{2} \right) = \sqrt{ \frac{1 - \cos 45^{\circ}}{2} } \] Since \( \cos 45^{\circ} = \frac{\sqrt{2}}{2} \), we can substitute this value into the equation: \[ \sin 22.5^{\circ} = \sqrt{ \frac{1 - \frac{\sqrt{2}}{2}}{2} } \] Now simplify the expression: \[ \sin 22.5^{\circ} = \sqrt{ \frac{2 - \sqrt{2}}{4} } = \frac{\sqrt{2 - \sqrt{2}}}{2} \] Thus, the exact value of \( \sin 22.5^{\circ} \) is \[ \sin 22.5^{\circ} = \frac{\sqrt{2 - \sqrt{2}}}{2} \]