For the piecewise function, find the values \( h(-8), h(2), h(5) \), and \( h(6) \) \( h(x)=\left\{\begin{array}{ll}-3 x-18, & \text { for } x<-6 \\ 5, & \text { for }-6 \leq x<5 \\ x+1, & \text { for } x \geq 5\end{array}\right. \) \( h(-8)=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the values of \( h(-8) \), \( h(2) \), \( h(5) \), and \( h(6) \), we need to evaluate each using the given piecewise function. 1. For \( h(-8) \): Since \(-8 < -6\), we use the first piece, \( h(x) = -3x - 18 \). - \( h(-8) = -3(-8) - 18 = 24 - 18 = 6 \). 2. For \( h(2) \): Since \(-6 \leq 2 < 5\), we use the second piece, \( h(x) = 5 \). - \( h(2) = 5 \). 3. For \( h(5) \): Since \(5 \geq 5\), we use the third piece, \( h(x) = x + 1 \). - \( h(5) = 5 + 1 = 6 \). 4. For \( h(6) \): Since \(6 \geq 5\), we again use the third piece, \( h(x) = x + 1 \). - \( h(6) = 6 + 1 = 7 \). Now we can summarize our values: - \( h(-8) = 6 \) - \( h(2) = 5 \) - \( h(5) = 6 \) - \( h(6) = 7 \) So in conclusion: \( h(-8) = 6, h(2) = 5, h(5) = 6, h(6) = 7 \)