\( \left. \begin{array} { l } { m ^ { 3 } + 27 } \\ { ( m + 3 ) ^ { 3 } } \\ { ( m + 3 ) ( m ^ { 2 } + 9 ) } \\ { ( m - 3 ) ( m ^ { 2 } + 3 m + 9 ) } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Did you know that the expression \( m^3 + 27 \) can be factored using the sum of cubes formula? The formula states that \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \). Here, you can think of \( m \) as \( a \) and \( 3 \) as \( b \), leading to the factorization \( (m + 3)(m^2 - 3m + 9) \). That’s math magic at work! Now, let’s talk about where this knowledge comes in handy. When simplifying algebraic expressions or solving equations, being able to factor polynomials quickly can save time and help you tackle complex problems with ease. So next time you encounter a cubic expression, remember to look for patterns like the sum of cubes to blow your math problems wide open!