Write the formula for Newton's method and use the given initial approximation to compute the approximations \( x_{1} \) and \( x_{2} \). \( f(x)=x^{2}+2 x-15, x_{0}=4 \) B. \( x_{n+1}=x_{n}+\frac{x_{n}^{2}+2 x_{n}-15}{2 x_{n}+2} \) C. \( x_{n+1}=x_{n}-\frac{2 x_{n}+2}{x_{n}^{2}+2 x_{n}-15} \) D. \( x_{n+1}=x_{n}-\frac{x_{n}^{2}+2 x_{n}-15}{2 x_{n}+2} \) Use the given initial approximation to compute the approximations \( x_{1} \) and \( x_{2} \). \( x_{1}=\square \) (Do not round until the final answer. Then round to three decimal places as needed.) \( x_{2}=\square \) (Do not round until the final answer. Then round to three decimal places as needed.) (D)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To compute the approximations \( x_{1} \) and \( x_{2} \) using Newton's method with the given function \( f(x) = x^2 + 2x - 15 \) and initial approximation \( x_{0} = 4 \), we will use formula (D): \[ x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} \] First, we need to find \( f(x) \) and its derivative \( f'(x) \): 1. **Evaluate \( f(x_0) \)**: \[ f(4) = 4^2 + 2(4) - 15 = 16 + 8 - 15 = 9 \] 2. **Calculate \( f'(x) \)**: \[ f'(x) = 2x + 2 \] Now, evaluate \( f'(x_0) \): \[ f'(4) = 2(4) + 2 = 8 + 2 = 10 \] 3. **Calculate \( x_{1} \)**: \[ x_{1} = x_{0} - \frac{f(4)}{f'(4)} = 4 - \frac{9}{10} = 4 - 0.9 = 3.1 \] 4. **Now compute \( x_{2} \)** by repeating the process using \( x_{1} = 3.1 \): - **Evaluate \( f(x_1) \)**: \[ f(3.1) = (3.1)^2 + 2(3.1) - 15 = 9.61 + 6.2 - 15 = 0.81 \] - **Calculate \( f'(3.1) \)**: \[ f'(3.1) = 2(3.1) + 2 = 6.2 + 2 = 8.2 \] - **Calculate \( x_{2} \)**: \[ x_{2} = x_{1} - \frac{f(3.1)}{f'(3.1)} = 3.1 - \frac{0.81}{8.2} \approx 3.1 - 0.0988 \approx 3.0012 \] Finally, rounding these results to three decimal places: \( x_{1} = 3.100 \) \( x_{2} = 3.001 \)