Pregunta
Find the position and velocity of an object moving along a sfraight line with the given accesteration, initial velocity, and initial position. \[ a(t)=\cos \pi t, v(0)=7, s(0)=5 \] The velocity is \( v(t)=\square \) (Type an exact answer.)
Ask by Beck Bright. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The velocity \( v(t) \) is \( 7 + \frac{\sin(\pi t)}{\pi} \).
Solución
The velocity \( v(t) \) is given by:
\[
v(t) = 7 + \frac{\sin(\pi t)}{\pi}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the velocity, we need to integrate the acceleration function \( a(t) = \cos(\pi t) \). Integrating \( a(t) \): \[ v(t) = \int a(t) \, dt = \int \cos(\pi t) \, dt = \frac{1}{\pi} \sin(\pi t) + C \] Using the initial condition \( v(0) = 7 \): \[ v(0) = \frac{1}{\pi} \sin(0) + C = 7 \implies C = 7 \] Thus, the velocity function is: \[ v(t) = \frac{1}{\pi} \sin(\pi t) + 7 \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium