Pregunta
upstudy study bank question image url

Solve the following system of linear equations using (a) substitution and (b) determinants. \[ \begin{array}{r}3 x+5 y-13 \\ x-2 y=0.75\end{array} \]

Ask by Mills Bryant. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the system of equations is \( x = \frac{119}{44} \) and \( y = \frac{43}{44} \).

Solución

Let's solve the system of linear equations using both the **substitution method** and the **determinant (Cramer's) method**. The given system is: \[ \begin{cases} 3x + 5y = 13 \\ x - 2y = 0.75 \end{cases} \] --- ### **(a) Substitution Method** 1. **Solve the second equation for \( x \):** \[ x = 0.75 + 2y \] 2. **Substitute \( x = 0.75 + 2y \) into the first equation:** \[ 3(0.75 + 2y) + 5y = 13 \] 3. **Expand and simplify:** \[ 2.25 + 6y + 5y = 13 \\ 11y = 13 - 2.25 \\ 11y = 10.75 \\ y = \frac{10.75}{11} = \frac{43}{44} \] 4. **Find \( x \) using the expression from step 1:** \[ x = 0.75 + 2\left(\frac{43}{44}\right) \\ x = \frac{3}{4} + \frac{86}{44} = \frac{33}{44} + \frac{86}{44} = \frac{119}{44} \] **Solution:** \[ x = \frac{119}{44}, \quad y = \frac{43}{44} \] --- ### **(b) Determinant (Cramer's) Method** 1. **Write the system in matrix form:** \[ \begin{cases} 3x + 5y = 13 \\ x - 2y = 0.75 \end{cases} \] 2. **Compute the main determinant \( D \):** \[ D = \begin{vmatrix} 3 & 5 \\ 1 & -2 \end{vmatrix} = 3(-2) - 5(1) = -6 - 5 = -11 \] 3. **Compute \( D_x \) by replacing the first column with the constants:** \[ D_x = \begin{vmatrix} 13 & 5 \\ 0.75 & -2 \end{vmatrix} = 13(-2) - 5(0.75) = -26 - 3.75 = -29.75 = -\frac{119}{4} \] 4. **Compute \( D_y \) by replacing the second column with the constants:** \[ D_y = \begin{vmatrix} 3 & 13 \\ 1 & 0.75 \end{vmatrix} = 3(0.75) - 13(1) = 2.25 - 13 = -10.75 = -\frac{43}{4} \] 5. **Find \( x \) and \( y \) using Cramer's Rule:** \[ x = \frac{D_x}{D} = \frac{-\frac{119}{4}}{-11} = \frac{119}{44} \] \[ y = \frac{D_y}{D} = \frac{-\frac{43}{4}}{-11} = \frac{43}{44} \] **Solution:** \[ x = \frac{119}{44}, \quad y = \frac{43}{44} \] --- Both methods yield the same solution: \[ \boxed{\left( \dfrac{119}{44},\; \dfrac{43}{44} \right)} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s solve the system of equations step by step using substitution first. ### (a) Substitution Method We have the system of equations: 1. \( 3x + 5y = 13 \) 2. \( x - 2y = 0.75 \) **Step 1: Solve one equation for one variable.** From the second equation, solve for \( x \): \[ x = 2y + 0.75 \] **Step 2: Substitute this expression for \( x \) into the first equation.** Substitute \( x \) into the first equation: \[ 3(2y + 0.75) + 5y = 13 \] **Step 3: Simplify and solve for \( y \).** \[ 6y + 2.25 + 5y = 13 \] \[ 11y + 2.25 = 13 \] \[ 11y = 13 - 2.25 \] \[ 11y = 10.75 \] \[ y = \frac{10.75}{11} \approx 0.976 \] **Step 4: Substitute back to find \( x \).** Now substitute \( y \) back to find \( x \): \[ x = 2(0.976) + 0.75 \approx 1.952 + 0.75 = 2.702 \] So, the solution is approximately \( x \approx 2.702 \) and \( y \approx 0.976 \). ### (b) Determinants Method (Cramer's Rule) Using Cramer’s rule, we need the coefficients of the system: \[ \begin{align*} 3x + 5y &= 13 \\ x - 2y &= 0.75 \end{align*} \] **Step 1: Determine the coefficient matrix and constant matrix.** \[ A = \begin{bmatrix} 3 & 5 \\ 1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 13 \\ 0.75 \end{bmatrix} \] **Step 2: Calculate the determinant of the coefficient matrix.** \[ D = \text{det}(A) = 3 \cdot (-2) - 5 \cdot 1 = -6 - 5 = -11 \] **Step 3: Calculate determinants for \( x \) and \( y \).** \[ D_x = \text{det}\begin{bmatrix} 13 & 5 \\ 0.75 & -2 \end{bmatrix} = 13 \cdot (-2) - 5 \cdot 0.75 = -26 - 3.75 = -29.75 \] \[ D_y = \text{det}\begin{bmatrix} 3 & 13 \\ 1 & 0.75 \end{bmatrix} = 3 \cdot 0.75 - 13 \cdot 1 = 2.25 - 13 = -10.75 \] **Step 4: Solve for \( x \) and \( y \).** \[ x = \frac{D_x}{D} = \frac{-29.75}{-11} \approx 2.704 \] \[ y = \frac{D_y}{D} = \frac{-10.75}{-11} \approx 0.976 \] Thus, the solution using both methods results in \( x \approx 2.704 \) and \( y \approx 0.976 \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad