Pregunta
upstudy study bank question image url

Use the elimination method to solve the given system of equations. \( \left\{\begin{array}{l}4 x=5 y=21 \\ 2 x+5 y=0\end{array}\right. \) \[ \begin{array}{l}\text { A. }(0,-4.2) \\ \text { B. }(3.5,-1,4) \\ \text { C. }(2.625,-1.05) \\ \text { D. }(10.5,-4.2)\end{array} \]

Ask by Chandler Mcfarlane. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( (10.5, -4.2) \), which is option D.

Solución

To solve the given system of equations using the elimination method, let's first clarify the system: \[ \begin{cases} 4x + 5y = 21 \\ 2x + 5y = 0 \end{cases} \] **Step 1: Subtract the second equation from the first** \[ (4x + 5y) - (2x + 5y) = 21 - 0 \\ 4x + 5y - 2x - 5y = 21 \\ 2x = 21 \\ x = \frac{21}{2} = 10.5 \] **Step 2: Substitute \( x = 10.5 \) into the second equation** \[ 2(10.5) + 5y = 0 \\ 21 + 5y = 0 \\ 5y = -21 \\ y = \frac{-21}{5} = -4.2 \] **Solution:** \( (x, y) = (10.5, -4.2) \) **Answer:** **D.** \((10.5,\ -4.2)\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's rewrite the system of equations clearly. The equations seem to be a bit jumbled, so we'll interpret them accordingly. The first equation can be divided into two separate equations: 1. \(4x + 5y = 21\) 2. \(2x + 5y = 0\) Now, we can use the elimination method to solve the system. We'll eliminate \(y\) by subtracting the second equation from the first equation. 1. Start with the two equations: \[ 4x + 5y = 21 \quad (1) \] \[ 2x + 5y = 0 \quad (2) \] 2. Subtract equation (2) from equation (1): \[ (4x + 5y) - (2x + 5y) = 21 - 0 \] This simplifies to: \[ 2x = 21 \] Therefore: \[ x = \frac{21}{2} = 10.5 \] 3. Now substitute \(x = 10.5\) back into equation (2) to find \(y\): \[ 2(10.5) + 5y = 0 \] This gives: \[ 21 + 5y = 0 \quad \Rightarrow \quad 5y = -21 \quad \Rightarrow \quad y = -\frac{21}{5} = -4.2 \] So, the solution to the system is \( (x, y) = (10.5, -4.2) \), which matches option **D**. Thus the answer is: \[ \boxed{(10.5, -4.2)} \] And here are your additional insights: History has a funny way of repeating itself, and the elimination method isn't just a modern math trick; it dates back to the time of ancient civilizations! The Babylonians and Egyptians used methods of solving systems of linear equations, which were foundational to algebra and laid the groundwork for modern math. Now, in terms of real-world application, the elimination method is a handy tool for various fields, including economics for solving supply and demand equations, engineering for balancing forces, and computer science in algorithms that solve optimization problems. It’s like having a magic key that unlocks solutions to real-life puzzles!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad