Pregunta
upstudy study bank question image url

What is the point of inte \( \begin{array}{l}y=3 x-7 \\ 2 x+y=13\end{array} \)

Ask by Frazier Ramos. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The point of intersection is at (4, 5).

Solución

It looks like you're asking for the **point of intersection** of the two linear equations: \[ \begin{align*} y &= 3x - 7 \quad \text{(Equation 1)} \\ 2x + y &= 13 \quad \text{(Equation 2)} \end{align*} \] To find the **point of intersection**, we need to find the values of \( x \) and \( y \) that satisfy both equations simultaneously. Here's a step-by-step method to solve this system of equations: ### Method 1: Substitution 1. **Express one variable in terms of the other:** Equation 1 already expresses \( y \) in terms of \( x \): \[ y = 3x - 7 \] 2. **Substitute this expression into the second equation:** Replace \( y \) in Equation 2 with \( 3x - 7 \): \[ 2x + (3x - 7) = 13 \] 3. **Combine like terms and solve for \( x \):** \[ 2x + 3x - 7 = 13 \\ 5x - 7 = 13 \\ 5x = 13 + 7 \\ 5x = 20 \\ x = \frac{20}{5} \\ x = 4 \] 4. **Find \( y \) using the value of \( x \) in Equation 1:** \[ y = 3(4) - 7 \\ y = 12 - 7 \\ y = 5 \] ### Method 2: Elimination Alternatively, you can use the elimination method: 1. **Write both equations:** \[ \begin{align*} y &= 3x - 7 \quad \text{(Equation 1)} \\ 2x + y &= 13 \quad \text{(Equation 2)} \end{align*} \] 2. **Subtract Equation 1 from Equation 2:** \[ (2x + y) - y = 13 - (3x - 7) \\ 2x = 13 - 3x + 7 \\ 2x + 3x = 20 \\ 5x = 20 \\ x = 4 \] 3. **Find \( y \) using the value of \( x \) in Equation 1:** \[ y = 3(4) - 7 = 12 - 7 = 5 \] ### **Solution** Both methods lead to the same solution. **The point of intersection is at \((4,\,5)\).** ### **Verification** To ensure that this point lies on both lines: 1. **Check in Equation 1:** \[ y = 3(4) - 7 = 12 - 7 = 5 \quad \checkmark \] 2. **Check in Equation 2:** \[ 2(4) + 5 = 8 + 5 = 13 \quad \checkmark \] Since \((4, 5)\) satisfies both equations, it's indeed the correct point of intersection.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the point of intersection of the lines represented by the equations \(y = 3x - 7\) and \(2x + y = 13\), we can substitute the expression for \(y\) from the first equation into the second equation. Substituting gives: \[ 2x + (3x - 7) = 13 \] This simplifies to: \[ 5x - 7 = 13 \] Adding 7 to both sides gives: \[ 5x = 20 \] Dividing by 5, we find: \[ x = 4 \] Now, plug the value of \(x\) back into the first equation to find \(y\): \[ y = 3(4) - 7 = 12 - 7 = 5 \] So, the point of intersection is \((4, 5)\). When looking at points of intersection in real-life systems, such as in economics or engineering, these points can represent optimal solutions, like maximizing profit or minimizing cost. Finding where two systems meet is crucial for making informed decisions! If you're solving systems of equations, one of the most common mistakes is forgetting to arrange equations in the same form. Keeping equations in standard form helps prevent errors in substitution or elimination processes. Always double-check your arithmetic too—small mistakes can lead to incorrect intersection points!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad