(5) Express \( Y \) as a percentage of \( X \) in each of the following. (a) \( X=4 \mathrm{~h}, Y=30 \mathrm{~min} \) (b) \( X=3 \ell, Y=120 \mathrm{ml} \) (c) \( X=6 \mathrm{~m}, Y=95 \mathrm{~cm} \) (d) \( X=5 \mathrm{~kg}, Y=75 \mathrm{~g} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To express \( Y \) as a percentage of \( X \) in each case, follow these steps: First, convert \( Y \) into the same units as \( X \), then use the formula \( \text{Percentage} = \left( \frac{Y}{X} \right) \times 100 \). (a) For \( X = 4 \mathrm{~h} \) and \( Y = 30 \mathrm{~min} \): Convert \( 4 \mathrm{~h} \) to minutes: \( 4 \times 60 = 240 \mathrm{~min} \). Then, \( \frac{30}{240} \times 100 = 12.5\% \). (b) For \( X = 3 \ell \) and \( Y = 120 \mathrm{ml} \): Convert \( 3 \ell \) to milliliters: \( 3 \times 1000 = 3000 \mathrm{ml} \). Then, \( \frac{120}{3000} \times 100 = 4\% \). (c) For \( X = 6 \mathrm{~m} \) and \( Y = 95 \mathrm{~cm} \): Convert \( 6 \mathrm{~m} \) to centimeters: \( 6 \times 100 = 600 \mathrm{~cm} \). Then, \( \frac{95}{600} \times 100 \approx 15.83\% \). (d) For \( X = 5 \mathrm{~kg} \) and \( Y = 75 \mathrm{~g} \): Convert \( 5 \mathrm{~kg} \) to grams: \( 5 \times 1000 = 5000 \mathrm{~g} \). Then, \( \frac{75}{5000} \times 100 = 1.5\% \).