Pregunta
upstudy study bank question image url

3) What is the greatest number of terms for which: a) \( \sum_{k=1}^{n}(2 k+1) \) will have a value less than 68 ? b) \( \sum_{x=2}^{n}\left[3(2)^{x-1}\right] \) will have a value less than 89 ?

Ask by Vaughan Jimenez. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) 7 terms b) 4 terms

Solución

Let's solve each part step-by-step. ### **Part a** **Problem:** Find the greatest number of terms \( n \) for which: \[ \sum_{k=1}^{n} (2k + 1) < 68 \] **Solution:** 1. **Calculate the Sum:** \[ \sum_{k=1}^{n} (2k + 1) = 2\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 2 \left(\frac{n(n+1)}{2}\right) + n = n^2 + 2n \] 2. **Set Up Inequality:** \[ n^2 + 2n < 68 \] 3. **Solve the Quadratic Inequality:** \[ n^2 + 2n - 68 < 0 \] Using the quadratic formula: \[ n = \frac{-2 \pm \sqrt{4 + 272}}{2} = \frac{-2 \pm \sqrt{276}}{2} = -1 \pm \sqrt{69} \approx -1 \pm 8.3066 \] The positive root is approximately \( 7.3066 \). 4. **Determine the Maximum Integer \( n \):** Since \( n \) must be an integer and less than \( 7.3066 \), the maximum \( n \) is **7**. **Verification:** \[ S(7) = 7^2 + 2 \times 7 = 49 + 14 = 63 < 68 \] \[ S(8) = 8^2 + 2 \times 8 = 64 + 16 = 80 > 68 \] ### **Part b** **Problem:** Find the greatest number of terms \( n \) for which: \[ \sum_{x=2}^{n} 3 \cdot 2^{x-1} < 89 \] **Solution:** 1. **Recognize the Geometric Series:** \[ S(n) = 3 \sum_{x=2}^{n} 2^{x-1} = 3 \sum_{y=1}^{n-1} 2^y = 3 \left(2^n - 2\right) \] 2. **Set Up Inequality:** \[ 3 \left(2^n - 2\right) < 89 \implies 2^n - 2 < \frac{89}{3} \approx 29.6667 \implies 2^n < 31.6667 \] 3. **Find Maximum \( n \):** - \( 2^5 = 32 > 31.6667 \) (Not valid) - \( 2^4 = 16 < 31.6667 \) (Valid) 4. **Maximum \( n \) is **4**. **Verification:** \[ S(4) = 3 \times (2^4 - 2) = 3 \times 14 = 42 < 89 \] \[ S(5) = 3 \times (2^5 - 2) = 3 \times 30 = 90 > 89 \] ### **Final Answer:** a) 7 terms; b) 4 terms

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle this problem, let's break it down into two parts. For the first part, the sum \( \sum_{k=1}^{n}(2k+1) \) can be simplified. This sum represents the sum of the first \( n \) odd numbers, which is given by the formula \( n^2 \). We want \( n^2 < 68 \). By taking the square root, we find \( n < \sqrt{68} \approx 8.25 \). Thus, the greatest integer \( n \) is 8. Hence, the greatest number of terms is 8. For the second part, we analyze the sum \( \sum_{x=2}^{n}\left[3(2)^{x-1}\right] \). This is a geometric series where the first term (at \( x=2 \)) is \( 3(2)^{1} = 6 \), and the common ratio is 2. The formula for the sum of a geometric series can be used here: \( S_n = a \frac{(r^n - 1)}{(r - 1)} \), where \( a \) is the first term, \( r \) is the common ratio, and \( n \) is the number of terms. Setting the sum less than 89 gives \( 6(2^{n-1}-1) < 89(2-1) \). Solving this inequality, we find \( n \) should be less than or equal to 5, leading us to conclude that the greatest number of terms is 5. So the answers are: a) 8 b) 5

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad