Factorise fully: Divide exercise between 2 days (1.) \( 3 a^{2}+10 a+3 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To factorise the quadratic expression \( 3a^{2} + 10a + 3 \), we look for two numbers that multiply to \( 3 \times 3 = 9 \) (the product of the leading coefficient and the constant term) and add up to \( 10 \) (the coefficient of \( a \)). The numbers \( 1 \) and \( 9 \) fit this requirement! We can then split the middle term \( 10a \) into \( 1a + 9a \): \[ 3a^{2} + 1a + 9a + 3 \] Now, we can group the terms: \[ (3a^{2} + 1a) + (9a + 3) \] Factoring out the common terms gives: \[ a(3a + 1) + 3(3a + 1) \] Now notice \( (3a + 1) \) is common: \[ (3a + 1)(a + 3) \] So, \( 3a^{2} + 10a + 3 \) fully factors into \( (3a + 1)(a + 3) \)! Enjoy your math adventure!