Pregunta

Given that \( x = 0.5 \), calculate \( \sin^{-1}(x) \) and explain the result.

Ask by Ingram Bright. in Bhutan
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sin^{-1}(0.5) = 30^\circ \) or \( \frac{\pi}{6} \) radians.

Solución

To calculate \( \sin^{-1}(0.5) \), we'll determine the angle whose sine is 0.5. The inverse sine function, denoted as \( \sin^{-1}(x) \) or \( \arcsin(x) \), returns the angle \( \theta \) within the principal range of \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\) radians (or \(-90^\circ\) to \(90^\circ\)) such that: \[ \sin(\theta) = x \] ### Calculation: Given: \[ x = 0.5 \] We need to find \( \theta = \sin^{-1}(0.5) \). Recall that: \[ \sin\left(\frac{\pi}{6}\right) = \sin(30^\circ) = 0.5 \] Therefore: \[ \sin^{-1}(0.5) = \frac{\pi}{6} \text{ radians} \quad \text{or} \quad 30^\circ \] ### Explanation: The sine function relates an angle in a right-angled triangle to the ratio of the length of the opposite side to the hypotenuse. Specifically: \[ \sin(\theta) = \frac{\text{Opposite Side}}{\text{Hypotenuse}} \] When we take the inverse sine of a value, we're essentially asking: "What angle \( \theta \) has a sine equal to this value?" For \( x = 0.5 \), the angle \( \theta = 30^\circ \) (or \( \frac{\pi}{6} \) radians) satisfies this condition because: \[ \sin(30^\circ) = \frac{1}{2} = 0.5 \] Thus, \( \sin^{-1}(0.5) = 30^\circ \) or \( \frac{\pi}{6} \) radians. ### Summary: \[ \sin^{-1}(0.5) = 30^\circ = \frac{\pi}{6} \text{ radians} \] This means that an angle of 30 degrees (or \( \frac{\pi}{6} \) radians) has a sine value of 0.5 within the principal range of the inverse sine function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate \( \sin^{-1}(0.5) \), we need to find the angle \( \theta \) for which \( \sin(\theta) = 0.5 \). The solution to this equation is \( \theta = \frac{\pi}{6} \) radians (or 30 degrees), because this is the angle in the first quadrant where the sine value equals 0.5. This result means that \( \sin^{-1}(0.5) \) returns the principal value, which is always in the range of \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \) in radians. So, \( \sin^{-1}(0.5) = \frac{\pi}{6} \). If you want to see sine in action, picture this: imagine a right triangle where the opposite side to your angle is 1 unit long, and the hypotenuse is 2 units long. The sine of the angle is the ratio of the opposite side to the hypotenuse, which gives us 1/2, reinforcing that our angle \( \frac{\pi}{6} \) (or 30 degrees) is correct. When calculating the inverse sine function, it's crucial to remember that it is not only about finding the right angle, but also about understanding its position on the unit circle. The angle we found, \( \frac{\pi}{6} \), sits beautifully in the first quadrant where both sine and cosine values are positive, confirming our result and completing the circle of understanding!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad