Pregunta
upstudy study bank question image url

You would like to have \( \$ 4,500 \) in 3 years for a special vacation following graduation by making deposits at the end of every six months in an annuity that pays \( 3.5 \% \) compounded semiannually. a. Determine how much you should deposit at the end of every six months. b. How much of the \( \$ 4,500 \) comes from deposits and how much comes from interest? a. In order to have \( \$ 4,500 \) in 3 years, you should deposit \( \$ \square \) at the end of every six months. (Do not round until the final answer. Then round up to the nearest dollar.) b. \( \$ \square \) of the \( \$ 4,500 \) comes from your deposits and \( \$ \square \) comes from interest. (Use the answer from part a to find this answer. Round to the nearest dollar as needed.)

Ask by Rodriguez Watkins. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You should deposit \$718 at the end of every six months. Of the \$4,500, \$4,308 comes from your deposits and \$192 comes from interest.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To determine how much to deposit at the end of every six months in an annuity that pays \( 3.5\% \) compounded semiannually, we use the formula for the future value of an ordinary annuity: \[ FV = P \times \left(\frac{(1 + r)^n - 1}{r}\right) \] Where: - \( FV \) is the future value of the annuity (\$4,500). - \( P \) is the deposit amount we want to find. - \( r \) is the interest rate per period (semiannual in this case, which is \( \frac{3.5\%}{2} = 0.0175 \)). - \( n \) is the number of periods (3 years = 6 periods). Rearranging the formula to solve for \( P \): \[ P = \frac{FV}{\left(\frac{(1 + r)^n - 1}{r}\right)} \] Plugging in the values: \[ P = \frac{4500}{\left(\frac{(1 + 0.0175)^6 - 1}{0.0175}\right)} \] Calculating the term \( (1 + 0.0175)^6 - 1 \): \[ (1 + 0.0175)^6 \approx 1.115805 \quad \text{thus} \quad 1.115805 - 1 = 0.115805 \] Now calculate: \[ \frac{0.115805}{0.0175} \approx 6.608 \] Continuing with our calculation for \( P \): \[ P = \frac{4500}{6.608} \approx 680.62 \] Rounding up to the nearest dollar, the deposit amount is: **a. In order to have \( \$ 4,500 \) in 3 years, you should deposit \( \$ 681 \) at the end of every six months.** Now, let's find how much of the \( \$ 4,500 \) comes from deposits and how much comes from interest: Total amount deposited over 6 periods: \[ \text{Total Deposits} = P \times n = 681 \times 6 = 4086 \] The interest earned is: \[ \text{Interest} = FV - \text{Total Deposits} = 4500 - 4086 = 414 \] **b. \( \$ 4,086 \) of the \( \$ 4,500 \) comes from your deposits and \( \$ 414 \) comes from interest.**

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad