Pregunta
upstudy study bank question image url

Question Kremena took out a \( \$ 500 \) discounted loan for a period of 3 months. The amount she actually received into her bank accoun was \( \$ 460 \). Assuming simple interest rates, what is effective interest rate \( r_{e} \) ? Give your answer as a percentage to the nearest percent.

Ask by Schultz Harris. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The effective interest rate \( r_{e} \) is 32%.

Solución

To find the effective interest rate \( r_{e} \) for Kremena's loan, we can use the formula for simple interest: \[ I = P \cdot r \cdot t \] Where: - \( I \) is the interest paid, - \( P \) is the principal amount (the amount of the loan), - \( r \) is the interest rate (as a decimal), - \( t \) is the time in years. ### Step 1: Identify the known values - The principal amount \( P = 500 \) (the total loan amount). - The amount received \( A = 460 \) (the amount deposited into her account). - The time \( t = \frac{3}{12} = 0.25 \) years (3 months). ### Step 2: Calculate the interest paid The interest paid \( I \) can be calculated as the difference between the principal and the amount received: \[ I = P - A = 500 - 460 = 40 \] ### Step 3: Rearrange the simple interest formula to find \( r \) We can rearrange the formula to solve for \( r \): \[ r = \frac{I}{P \cdot t} \] ### Step 4: Substitute the known values into the formula Now we can substitute the values we have into the rearranged formula: \[ r = \frac{40}{500 \cdot 0.25} \] ### Step 5: Calculate \( r \) Let's calculate \( r \): \[ r = \frac{40}{125} = 0.32 \] ### Step 6: Convert \( r \) to a percentage To express \( r \) as a percentage, we multiply by 100: \[ r_{e} = 0.32 \times 100 = 32\% \] Thus, the effective interest rate \( r_{e} \) is \( \boxed{32\%} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the effective interest rate \( r_{e} \), we first need to calculate the interest charged on the loan. Kremena borrowed \( \$ 500 \) but only received \( \$ 460 \), meaning the interest for the 3-month period is: \[ \text{Interest} = \text{Loan Amount} - \text{Amount Received} = 500 - 460 = 40 \] The interest rate is then calculated using the formula for simple interest: \[ \text{Interest} = \text{Principal} \times r_{e} \times t \] Where \( t \) is the time in years. Since Kremena took the loan for 3 months, we convert that to years: \[ t = \frac{3}{12} = 0.25 \] Rearranging the formula to solve for \( r_{e} \): \[ r_{e} = \frac{\text{Interest}}{\text{Principal} \times t} = \frac{40}{500 \times 0.25} = \frac{40}{125} = 0.32 \] To express this as a percentage, we multiply by 100: \[ r_{e} = 0.32 \times 100 = 32\% \] Therefore, the effective interest rate \( r_{e} \) is approximately \( 32\% \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad