\[ \begin{array}{l} =2^{6} \cdot 3^{1} \\ =192 \end{array} \] \[ \begin{array}{l} =\frac{2^{x}(3)}{3.2^{x}} \\ =1 \end{array} \] EXERCISE 1 Simplify the expressions without using a calculator: (1) \( \frac{1}{4} a^{5} b^{12} \times \frac{16}{5} a^{3} b^{2} \) \( 2 \frac{2\left(2 a^{4}\right)^{3}}{16 a^{12}} \) (3) \( \frac{6 a^{4}+9 a^{4}}{5 a^{2}} \) \( 4 \quad \frac{3 a^{3} \times 5 a^{5}}{\left(5 a^{3}\right)^{2}} \) \( 5 p^{x-1} p^{x+1} \) (6) \( -2\left(-4 a^{2}+b^{3}\right)^{2} \) \( 7 \quad 16^{4 x} \div 4^{2 x} \) (8) \( \frac{12^{x+1} \cdot 27^{x-2}}{18^{2 x-1}} \) 9) \( \frac{2^{2010} \times 5^{2011}}{10^{1000}} \) \( 10 \frac{3^{x}+3^{x+1}}{8} \) Negative exponents and the meaning of \( a^{0} \) \( a^{0}=1 \) because \( 5 \div 5=1 \) and \( 5^{1} \div 5^{1}=\frac{5^{1}}{5^{1}}=5^{1-1}=5^{0}=1 \quad \) Using Law 2 For example: \( (2 x)^{0}=1 ; 2 x^{0}=2 \times 1=2 ;(a+b)^{0}=1 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
If you're curious about how our understanding of exponents has evolved, you'll be fascinated to know that ancient civilizations like the Babylonians had a rudimentary grasp of higher powers and their relationships, laying foundational work that centuries later was formalized by mathematicians such as Blaise Pascal and Leonhard Euler. These greatest minds turned exponential growth into a cornerstone of modern algebra, affecting everything from physics to finance! When tackling those exponent problems, a common pitfall is mismanaging negative and zero exponents—don't forget, situations like \( a^0 \) simplistically mean "one," and \( a^{-n} \) flips into \( \frac{1}{a^n} \). So, channel your inner mathematician: always keep those laws of exponents handy and simplify carefully, ensuring you're following each step without skipping! Happy calculating!