Find \( f+g, f-g, f g \) and \( \frac{f}{g} \). Determine the domain for each function. \[ f(x)=5 x+2, g(x)=x-6 \] c. The domain of \( f+g \) is \( \varnothing \). \( (\mathrm{f}-\mathrm{g})(\mathrm{x})=4 \mathrm{x}+8 \) (Simplify your answer.) What is the domain of \( f-g \) ? A. The domain of \( f-g \) is \( \square \) \} . (Use a comma to separate answers as needed.) B. The domain of \( f-g \) is \( \square \) . (Type your answer in interval notation.) C. The domain of \( f-g \) is \( \varnothing \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( f+g, f-g, fg, \) and \( \frac{f}{g} \): 1. **Addition:** \[ (f+g)(x) = f(x) + g(x) = (5x + 2) + (x - 6) = 6x - 4 \] The domain is all real numbers: \( \mathbb{R} \). 2. **Subtraction:** \[ (f-g)(x) = f(x) - g(x) = (5x + 2) - (x - 6) = 5x + 2 - x + 6 = 4x + 8 \] The domain is all real numbers: \( \mathbb{R} \). 3. **Multiplication:** \[ (fg)(x) = f(x) \cdot g(x) = (5x + 2)(x - 6) = 5x^2 - 30x + 2x - 12 = 5x^2 - 28x - 12 \] The domain is all real numbers: \( \mathbb{R} \). 4. **Division:** \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{5x + 2}{x - 6} \] The domain excludes where \( g(x) = 0 \): \( x \neq 6 \), so the domain in interval notation is \( (-\infty, 6) \cup (6, \infty) \). Now answering your specific question about the domain of \( f-g \): **A.** The domain of \( f-g \) is \( \mathbb{R} \). **B.** The domain of \( f-g \) is \( (-\infty, \infty) \). **C.** The domain of \( f-g \) is \( \varnothing \).