Pregunta
upstudy study bank question image url

Describe how the function \( f(x)=-4 \sqrt{x}+2 \) is a transformation of a toolkit function. This is a square root function stretched vertically by a factor of 4 , reflected vertically across the \( x \)-axis, and then shifted up 2 units. This is a square root function stretched horizontally by a factor of 4 , reflected vertically across the \( x \)-axis, and then shifted up 2 units. This is a square root function stretched vertically by a factor of 4 , reflected horizontally across the \( x \)-axis, and then shifted up 2 units. This is a square root function compressed vertically by a factor of 4 , reflected vertically across the \( x \)-axis, and then shifted up 2 units.

Ask by Hanson Schofield. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = -4 \sqrt{x} + 2 \) is a square root function stretched vertically by a factor of 4, reflected vertically across the \( x \)-axis, and then shifted up 2 units.

Solución

The function \( f(x) = -4 \sqrt{x} + 2 \) can be understood as a transformation of the basic square root function \( \sqrt{x} \). Here's a step-by-step breakdown of the transformations applied: 1. **Vertical Stretch by a Factor of 4**: The coefficient **-4** in front of the square root indicates that the graph is stretched vertically by a factor of 4. This means that for each \( x \), the \( y \)-values are multiplied by 4, making the graph four times taller than the original square root function. 2. **Reflection Across the \( x \)-Axis**: The negative sign **(-)** before the 4 means that the graph is also reflected vertically across the \( x \)-axis. This flips the graph upside down. 3. **Vertical Shift Upwards by 2 Units**: The constant **+2** at the end signifies that the entire graph is shifted upwards by 2 units. This moves the graph higher along the \( y \)-axis. Putting it all together, the function \( f(x) = -4 \sqrt{x} + 2 \) represents a square root function that is **stretched vertically by a factor of 4**, **reflected vertically across the \( x \)-axis**, and then **shifted up 2 units**. **Correct Description:** *This is a square root function stretched vertically by a factor of 4, reflected vertically across the \( x \)-axis, and then shifted up 2 units.*

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( f(x) = -4 \sqrt{x} + 2 \) originates from the basic square root function \( \sqrt{x} \). The negative sign reflects the graph over the \( x \)-axis, creating a downward-opening curve. The coefficient of -4 stretches the function vertically by a factor of 4, meaning that for each \( x \), the output \( f(x) \) is four times that of the normal square root function and inverted due to the reflection. Lastly, the "+2" moves our graph upwards by 2 units. In practical terms, if you were to graph this transformation step by step, you would start with the basic square root function, apply the vertical reflection, stretch it taller by a factor of 4, and then elevate the entire graph by 2 units. The resulting function is a downward-opening curve, making it distinct from its original shape.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad