Pregunta
upstudy study bank question image url

3. Multiply or divide each. List any restrictions on the variables. a. \( \frac{2 x^{2}-32}{x^{2}-10 x+24} \cdot \frac{x^{2}-4 x-12}{10 x+20} \)

Ask by Hilton Garza. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified expression is \( \frac{x + 4}{5} \) with restrictions \( x \neq 6 \), \( x \neq 4 \), and \( x \neq -2 \).

Solución

To solve the expression \[ \frac{2 x^{2}-32}{x^{2}-10 x+24} \cdot \frac{x^{2}-4 x-12}{10 x+20}, \] we will follow these steps: 1. **Factor each polynomial in the expression.** 2. **Identify any restrictions on the variables.** 3. **Multiply the fractions.** ### Step 1: Factor each polynomial **a. Factor \(2x^2 - 32\)** This can be factored as: \[ 2(x^2 - 16) = 2(x - 4)(x + 4). \] **b. Factor \(x^2 - 10x + 24\)** To factor this quadratic, we look for two numbers that multiply to \(24\) and add to \(-10\). The factors are \(-6\) and \(-4\): \[ x^2 - 10x + 24 = (x - 6)(x - 4). \] **c. Factor \(x^2 - 4x - 12\)** We need two numbers that multiply to \(-12\) and add to \(-4\). The factors are \(-6\) and \(2\): \[ x^2 - 4x - 12 = (x - 6)(x + 2). \] **d. Factor \(10x + 20\)** This can be factored as: \[ 10(x + 2). \] ### Step 2: Rewrite the expression with factored forms Now we can rewrite the original expression using the factored forms: \[ \frac{2(x - 4)(x + 4)}{(x - 6)(x - 4)} \cdot \frac{(x - 6)(x + 2)}{10(x + 2)}. \] ### Step 3: Simplify the expression Now we can multiply the fractions: \[ \frac{2(x - 4)(x + 4)(x - 6)(x + 2)}{(x - 6)(x - 4)10(x + 2)}. \] Next, we can cancel out the common factors: - \(x - 4\) in the numerator and denominator. - \(x - 6\) in the numerator and denominator. - \(x + 2\) in the numerator and denominator. After canceling, we have: \[ \frac{2(x + 4)}{10}. \] This simplifies to: \[ \frac{x + 4}{5}. \] ### Step 4: Identify restrictions on the variables The restrictions come from the denominators in the original expression. We need to ensure that the denominators do not equal zero: 1. From \(x^2 - 10x + 24 = 0\): - \(x - 6 = 0 \Rightarrow x \neq 6\) - \(x - 4 = 0 \Rightarrow x \neq 4\) 2. From \(10x + 20 = 0\): - \(x + 2 = 0 \Rightarrow x \neq -2\) ### Final Result The simplified expression is: \[ \frac{x + 4}{5} \] with restrictions: \[ x \neq 6, \quad x \neq 4, \quad x \neq -2. \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To multiply the expressions, first, we need to factor each polynomial where possible. 1. Factor \(2x^2 - 32\): \(2(x^2 - 16) = 2(x - 4)(x + 4)\). 2. Factor \(x^2 - 10x + 24\): \((x - 4)(x - 6)\). 3. Factor \(x^2 - 4x - 12\): \((x - 6)(x + 2)\). 4. Factor \(10x + 20\): \(10(x + 2)\). Now, substitute the factored forms into the expression: \[ \frac{2(x - 4)(x + 4)}{(x - 4)(x - 6)} \cdot \frac{(x - 6)(x + 2)}{10(x + 2)} \] Next, cancel out the common factors: - The \(x - 4\) cancels with \(x - 4\) in the denominator. - The \(x - 6\) cancels with \(x - 6\) in the numerator. - The \(x + 2\) cancels with \(x + 2\). After simplification, we have: \[ \frac{2(x + 4)}{10} = \frac{1}{5}(x + 4) \] Now, let's identify the restrictions on the variables. Originally, we had the following denominators: 1. \(x^2 - 10x + 24\) cannot be zero: This means \(x - 4 \neq 0\) and \(x - 6 \neq 0\) or \(x \neq 4\) and \(x \neq 6\). 2. \(10x + 20\) cannot be zero: This means \(x + 2 \neq 0\) or \(x \neq -2\). In summary, the restrictions on \(x\) are: \(x \neq 4\), \(x \neq 6\), and \(x \neq -2\).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad