3. Multiply or divide each. List any restrictions on the variables. a. \( \frac{2 x^{2}-32}{x^{2}-10 x+24} \cdot \frac{x^{2}-4 x-12}{10 x+20} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To multiply the expressions, first, we need to factor each polynomial where possible. 1. Factor \(2x^2 - 32\): \(2(x^2 - 16) = 2(x - 4)(x + 4)\). 2. Factor \(x^2 - 10x + 24\): \((x - 4)(x - 6)\). 3. Factor \(x^2 - 4x - 12\): \((x - 6)(x + 2)\). 4. Factor \(10x + 20\): \(10(x + 2)\). Now, substitute the factored forms into the expression: \[ \frac{2(x - 4)(x + 4)}{(x - 4)(x - 6)} \cdot \frac{(x - 6)(x + 2)}{10(x + 2)} \] Next, cancel out the common factors: - The \(x - 4\) cancels with \(x - 4\) in the denominator. - The \(x - 6\) cancels with \(x - 6\) in the numerator. - The \(x + 2\) cancels with \(x + 2\). After simplification, we have: \[ \frac{2(x + 4)}{10} = \frac{1}{5}(x + 4) \] Now, let's identify the restrictions on the variables. Originally, we had the following denominators: 1. \(x^2 - 10x + 24\) cannot be zero: This means \(x - 4 \neq 0\) and \(x - 6 \neq 0\) or \(x \neq 4\) and \(x \neq 6\). 2. \(10x + 20\) cannot be zero: This means \(x + 2 \neq 0\) or \(x \neq -2\). In summary, the restrictions on \(x\) are: \(x \neq 4\), \(x \neq 6\), and \(x \neq -2\).