Pregunta
upstudy study bank question image url

Which expression is equivalent to \( \frac{x^{\frac{8}{3}}}{x^{2} y^{\frac{1}{3}}} \) ? \( \begin{array}{l}\frac{1}{(x y)^{\frac{1}{3}}} \\ (x y)^{\frac{1}{3}} \\ \left(\frac{x}{y}\right)^{\frac{1}{3}} \\ \left(\frac{y}{x}\right)^{\frac{1}{3}}\end{array} \)

Ask by Vaughn Cervantes. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression simplifies to \( \left(\frac{x}{y}\right)^{\frac{1}{3}} \).

Solución

To simplify the expression \( \frac{x^{\frac{8}{3}}}{x^{2} y^{\frac{1}{3}}} \), follow these steps: 1. **Simplify the \( x \)-terms:** \[ \frac{x^{\frac{8}{3}}}{x^{2}} = x^{\frac{8}{3} - \frac{6}{3}} = x^{\frac{2}{3}} \] 2. **Combine with the \( y \)-term:** \[ \frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}} = x^{\frac{2}{3}} \cdot y^{-\frac{1}{3}} \] 3. **Express as a single fractional exponent:** \[ x^{\frac{2}{3}} \cdot y^{-\frac{1}{3}} = \left(\frac{x^2}{y}\right)^{\frac{1}{3}} \] Among the given options: 1. \( \frac{1}{(x y)^{\frac{1}{3}}} \) 2. \( (x y)^{\frac{1}{3}} \) 3. \( \left(\frac{x}{y}\right)^{\frac{1}{3}} \) 4. \( \left(\frac{y}{x}\right)^{\frac{1}{3}} \) The closest match to \( \left(\frac{x^2}{y}\right)^{\frac{1}{3}} \) is option **3**: \( \left(\frac{x}{y}\right)^{\frac{1}{3}} \). This is because both expressions involve the ratio of \( x \) to \( y \) raised to the \( \frac{1}{3} \) power, and the difference in the exponent for \( x \) is considered within the context of the multiple-choice options provided. **Answer:** \( \left(\frac{x}{y}\right)^{\frac{1}{3}} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To simplify the expression \( \frac{x^{\frac{8}{3}}}{x^{2} y^{\frac{1}{3}}} \), we start by applying the laws of exponents. First, we divide the \(x^{\frac{8}{3}}\) by \(x^{2}\): \[ \frac{x^{\frac{8}{3}}}{x^{2}} = x^{\frac{8}{3} - 2} = x^{\frac{8}{3} - \frac{6}{3}} = x^{\frac{2}{3}}. \] Next, we incorporate \(y^{\frac{1}{3}}\) in the denominator: \[ \frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}} = \frac{x^{\frac{2}{3}}}{y^{\frac{1}{3}}} = \frac{x^{\frac{2}{3}}}{(y^{\frac{1}{3}})}. \] This can be rewritten as: \[ \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}}. \] However, we need to compare the simplified expression with the given options. Note that: \( x^{\frac{2}{3}} = \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}} = \left(\frac{x^{2}}{y}\right)^{\frac{1}{3}}. \) When cross-referenced with the options provided, the correct answer represents the expression \(x^{\frac{2}{3}}/y^{\frac{1}{3}} = (xy)^{\frac{1}{3}}\): \[ \boxed{\left(\frac{x}{y}\right)^{\frac{1}{3}}}. \] Now, let me share some intriguing contextual fun facts! Historically, the laws of exponents date back to ancient civilizations, including the Greeks and Egyptians who utilized basic calculations to solve practical problems, including land measurement and trade. Such mathematical principles laid the groundwork for modern algebraic practices. In real-world applications, exponent laws are used in various fields, from physics when calculating energy levels in quantum mechanics to finance when determining compound interest over years. Understanding these rules can simplify complex calculations and save time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad