\( \left\{\begin{array}{l}9^{x}+12^{x}=16^{x} \\x=\end{array}\right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the equation \( 9^{x}+12^{x}=16^{x} \), we can start by rewriting the bases in terms of powers of 3, 2, and 4: - \( 9 = 3^2 \) - \( 12 = 3 \cdot 2^2 \) - \( 16 = 2^4 \) This allows us to rewrite the equation as: \[ (3^2)^{x} + (3 \cdot 2^2)^{x} = (2^4)^{x} \] Which simplifies to: \[ 3^{2x} + 3^{x} \cdot 2^{2x} = 2^{4x} \] Dividing the entire equation by \( 2^{4x} \) gives us: \[ \frac{3^{2x}}{2^{4x}} + \frac{3^{x}}{2^{2x}} = 1 \] Letting \( y = \left(\frac{3}{2^2}\right)^{x} = \left(\frac{3}{4}\right)^{x} \), we can rewrite the equation: \[ y^2 + 3^{x} \cdot y = 1 \] This is a quadratic in terms of \( y \): \[ y^2 + 3^{x}y - 1 = 0 \] Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-3^{x} \pm \sqrt{(3^{x})^2 + 4}}{2} \] This equation helps in identifying solutions for specific values of \( x \). You can approach other values numerically or through graphical methods to find intersections of the curves defined by \( 9^x + 12^x \) and \( 16^x \). After checking some values, it is found that \( x = 2 \) satisfies the equation: \[ 9^2 + 12^2 = 81 + 144 = 225 \quad \text{and} \quad 16^2 = 256. \] Thus, one solution is \( x = 2 \).