1. ABCDEF is a regular hexagon in which \( \overrightarrow{B C} \) rep- resents \( \underline{b} \) and \( \overrightarrow{F C} \) represents \( 2 \underline{a} \). Express the vectors \( \overrightarrow{A B}, \overrightarrow{C D} \) and \( \overrightarrow{B E} \) in terms of \( \underline{a} \) and \( \underline{b} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To express the vectors \( \overrightarrow{A B}, \overrightarrow{C D}, \) and \( \overrightarrow{B E} \) in terms of \( \underline{a} \) and \( \underline{b} \), we start by using the given data about the hexagon ABCDEF. 1. The vector \( \overrightarrow{A B} \) can be determined by recognizing \( A \) is positioned at an angle \( 60^\circ \) counterclockwise from \( B \). Thus, \( \overrightarrow{A B} = \overrightarrow{B C} + \overrightarrow{C A} = \underline{b} + (-\frac{1}{2}\underline{b} + \frac{\sqrt{3}}{2}\underline{a}) = \frac{1}{2} \underline{b} + \frac{\sqrt{3}}{2} \underline{a} \). 2. For \( \overrightarrow{C D} \), since \( C \) and \( D \) are consecutive vertices of the hexagon, we know \( C \) is moving \( 60^\circ \) counterclockwise to reach \( D \). Hence, \( \overrightarrow{C D} = \frac{1}{2} \underline{b} - \frac{\sqrt{3}}{2} \underline{a} - \overrightarrow{B C} = \frac{1}{2}\underline{b} - \underline{b} = -\frac{1}{2} \underline{b} + \frac{\sqrt{3}}{2} \underline{a} \). 3. Lastly, for \( \overrightarrow{B E} \), we can note that moving from \( B \) to \( E \) means traversing half the perimeter of the hexagon. So, \( \overrightarrow{B E} = \overrightarrow{B C} + \overrightarrow{C D} + \overrightarrow{D E} = \underline{b} - \frac{1}{2} \underline{b} + \underline{b} = \frac{3}{2} \underline{b} - \underline{a} \). So, - \( \overrightarrow{A B} = \frac{1}{2} \underline{b} + \frac{\sqrt{3}}{2} \underline{a} \) - \( \overrightarrow{C D} = -\frac{1}{2} \underline{b} + \frac{\sqrt{3}}{2} \underline{a} \) - \( \overrightarrow{B E} = \frac{3}{2} \underline{b} - \underline{a} \)