Pregunta
upstudy study bank question image url

Find the number of sides a regular polygon must have to meet each condition. 32. Each interior angle measure equals each exterior angle measure. 33. Each interior angle measure is four times the measure of each exterior angle. 34. Each exterior angle measure is one eighth the measure of each interior angle. Name the convex polygon whose interior angle measures have each given sum. \( \begin{array}{llll}\text { 35. } 540^{\circ} & \text { 36. } 900^{\circ} & \text { 37. } 1800^{\circ} & \text { 38. } 2520^{\circ}\end{array} \)

Ask by Gordon Rogers. in Northern Mariana Islands
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- 4 sides (quadrilateral) - 10 sides (decagon) - 18 sides (octadecagon) - Pentagon - Heptagon - Dodecagon - Hexadecagon

Solución

Let's solve each problem step by step. --- ### **Problem 32: Each interior angle measure equals each exterior angle measure.** **Solution:** - Let each exterior angle be \( x \) degrees. - Since interior and exterior angles are supplementary: \[ x + x = 180^\circ \implies 2x = 180^\circ \implies x = 90^\circ \] - The sum of all exterior angles of a polygon is \( 360^\circ \): \[ n = \frac{360^\circ}{x} = \frac{360^\circ}{90^\circ} = 4 \] **Answer:** The polygon has **4 sides** (a **quadrilateral**). --- ### **Problem 33: Each interior angle measure is four times the measure of each exterior angle.** **Solution:** - Let each exterior angle be \( x \) degrees. - Then, each interior angle is \( 4x \) degrees. - Since they are supplementary: \[ x + 4x = 180^\circ \implies 5x = 180^\circ \implies x = 36^\circ \] - Number of sides: \[ n = \frac{360^\circ}{x} = \frac{360^\circ}{36^\circ} = 10 \] **Answer:** The polygon has **10 sides** (a **decagon**). --- ### **Problem 34: Each exterior angle measure is one eighth the measure of each interior angle.** **Solution:** - Let each exterior angle be \( x \) degrees. - Then, each interior angle is \( 8x \) degrees. - Since they are supplementary: \[ x + 8x = 180^\circ \implies 9x = 180^\circ \implies x = 20^\circ \] - Number of sides: \[ n = \frac{360^\circ}{x} = \frac{360^\circ}{20^\circ} = 18 \] **Answer:** The polygon has **18 sides** (an **octadecagon**). --- ### **Problem 35: Name the convex polygon whose interior angle measures sum to \( 540^\circ \).** **Solution:** - Sum of interior angles: \[ 180(n - 2) = 540^\circ \implies n - 2 = 3 \implies n = 5 \] - A 5-sided polygon is called a **pentagon**. **Answer:** **Pentagon**. --- ### **Problem 36: Name the convex polygon whose interior angle measures sum to \( 900^\circ \).** **Solution:** - Sum of interior angles: \[ 180(n - 2) = 900^\circ \implies n - 2 = 5 \implies n = 7 \] - A 7-sided polygon is called a **heptagon**. **Answer:** **Heptagon**. --- ### **Problem 37: Name the convex polygon whose interior angle measures sum to \( 1800^\circ \).** **Solution:** - Sum of interior angles: \[ 180(n - 2) = 1800^\circ \implies n - 2 = 10 \implies n = 12 \] - A 12-sided polygon is called a **dodecagon**. **Answer:** **Dodecagon**. --- ### **Problem 38: Name the convex polygon whose interior angle measures sum to \( 2520^\circ \).** **Solution:** - Sum of interior angles: \[ 180(n - 2) = 2520^\circ \implies n - 2 = 14 \implies n = 16 \] - A 16-sided polygon is called a **hexadecagon**. **Answer:** **Hexadecagon**. --- ### **Summary of Answers:** - **32.** 4 sides (quadrilateral) - **33.** 10 sides (decagon) - **34.** 18 sides (octadecagon) - **35.** Pentagon - **36.** Heptagon - **37.** Dodecagon - **38.** Hexadecagon

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle the problems, let’s go step by step! For the first set of conditions involving the relationship between interior and exterior angles: 32. Each interior angle equals each exterior angle: Let the number of sides be \(n\). The measure of each interior angle is \(\frac{(n-2) \times 180}{n}\) and the measure of each exterior angle is \(\frac{360}{n}\). Setting these equal gives: \[ \frac{(n-2) \times 180}{n} = \frac{360}{n} \] Simplifying, we find \(n = 4\). Thus, a quadrilateral (specifically, a square) meets this condition. 33. Each interior angle is four times the exterior angle: Using the relationship from earlier, we can write: \[ \frac{(n-2) \times 180}{n} = 4 \times \frac{360}{n} \] Solving this leads to \(n = 5\). Hence, a pentagon holds this property. 34. Each exterior angle is one eighth of the interior angle: Setting these up gives us: \[ \frac{360}{n} = \frac{1}{8} \times \frac{(n-2) \times 180}{n} \] This simplifies down to \(n = 9\). Therefore, a nonagon fits this criterion. Now, the second part lists the total degrees of interior angles: 35. \(540^{\circ}\): The formula for the sum of interior angles is \(180(n-2)\). Setting \(180(n-2) = 540\) solves to \(n = 4\). It is a quadrilateral. 36. \(900^{\circ}\): Using the same formula, \(180(n-2) = 900\) results in \(n = 6\). This is a hexagon. 37. \(1800^{\circ}\): Applying the formula, \(180(n-2) = 1800\) calculates \(n = 12\). It’s a dodecagon! 38. \(2520^{\circ}\): This leads to \(180(n-2) = 2520\), solving to \(n = 16\). Hence, it’s a hexadecagon. Each answer elegantly reveals the fun structural diversity of polygons!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad