\( 7 x^{-\frac{3}{2}} \) Answer \begin{tabular}{|c|}\hline\( \frac{7}{\sqrt{x^{3}}} \) \\ \( \frac{7}{\sqrt[3]{x^{2}}} \) \\ \( \frac{1}{\sqrt[3]{7 x^{2}}} \) \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
The expression \( 7 x^{-\frac{3}{2}} \) can be rewritten using properties of exponents. The negative exponent indicates the reciprocal, so you can express it as \( \frac{7}{x^{\frac{3}{2}}} \). Since \( x^{\frac{3}{2}} \) is the same as \( \sqrt{x^3} \), this leads us to the simplified form: \( \frac{7}{\sqrt{x^{3}}} \). In practical applications, understanding how to manipulate expressions with negative exponents can be very useful in fields like physics and engineering, where formulas often involve quantities raised to various powers. Being comfortable with these transformations allows you to simplify equations quickly and solve for desired variables more efficiently, helping to avoid mistakes in calculations.