CWeb sketchpad \( \begin{array}{l}\text { Part B } \\ \text { Identify the domaln and range of the function. } \\ \text { A } D=\text { all real numbers; } R=y \leq 4 \\ \text { B } D=\text { all real numbers; } R=\text { all real numbers } \\ \text { OC } D=y \leq 4 ; R=\text { all real numbers } \\ \text { OD } D=\text { all real numbers; } R=y \geq 4\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In evaluating the domain and range of a function, it's essential to understand how the function behaves. If the function is bounded by a maximum value, such as 4, then the range must reflect that limit. For instance, if you have a function that outputs values less than or equal to 4, then it makes sense that the range would be \( R = y \leq 4 \) which corresponds to the value of option A. Additionally, domain refers to the possible input values for the function. If it can accept any real number, then the domain is indeed all real numbers. However, if we see that the outputs (y-values) are limited, this affects our understanding of the range. Thus, understanding how these interact is key to correctly identifying the domain and range of the given function!