Convert the point \( (r, \theta, z)=\left(6, \frac{\pi}{2}, 4\right) \) to Cartesian coordinates. Give answers either as expressions, or decimals to at least one decimal place.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To convert the point \((r, \theta, z) = \left(6, \frac{\pi}{2}, 4\right)\) to Cartesian coordinates \((x, y, z)\), we can use the following relationships: 1. \(x = r \cdot \cos(\theta)\) 2. \(y = r \cdot \sin(\theta)\) 3. \(z = z\) Plugging in the given values: - \(r = 6\) - \(\theta = \frac{\pi}{2}\) - \(z = 4\) Calculating \(x\) and \(y\): \[ x = 6 \cdot \cos\left(\frac{\pi}{2}\right) = 6 \cdot 0 = 0 \] \[ y = 6 \cdot \sin\left(\frac{\pi}{2}\right) = 6 \cdot 1 = 6 \] So, the Cartesian coordinates are: \[ (x, y, z) = (0, 6, 4) \] Therefore, the point in Cartesian coordinates is \((0, 6, 4)\).