Pregunta
upstudy study bank question image url

Suppose you'd like to save enough money to pay cash for your next car. The goal is to save an extra \( \$ 23,000 \) over the next 6 years. What amount must be deposited quarterly into an account that earns \( 5.9 \% \) interest, compounded quarterly, in order to reach your goal? Round your answer to the nearest cent, if necessary. Formuia

Ask by Bird Davey. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit \$805.69 each quarter to save \$23,000 in 6 years.

Solución

To determine the quarterly deposit needed to save **\$23,000** over **6 years** with an interest rate of **5.9%**, compounded quarterly, we can use the **Future Value of an Ordinary Annuity** formula. ### **Given:** - **Future Value (FV):** \$23,000 - **Annual Interest Rate (r):** 5.9% or 0.059 - **Number of Years (t):** 6 - **Compounding Periods per Year (m):** 4 (quarterly) ### **Calculations:** 1. **Determine the Quarterly Interest Rate (i):** \[ i = \frac{r}{m} = \frac{0.059}{4} = 0.01475 \text{ (or 1.475\% per quarter)} \] 2. **Calculate the Total Number of Quarterly Payments (n):** \[ n = m \times t = 4 \times 6 = 24 \text{ quarters} \] 3. **Use the Future Value of an Ordinary Annuity Formula:** \[ FV = PMT \times \left( \frac{(1 + i)^n - 1}{i} \right) \] where: - **FV:** Future Value (\$23,000) - **PMT:** Quarterly Payment 4. **Rearrange the Formula to Solve for PMT:** \[ PMT = \frac{FV \times i}{(1 + i)^n - 1} \] 5. **Plug in the Known Values:** \[ PMT = \frac{23,000 \times 0.01475}{(1 + 0.01475)^{24} - 1} \] 6. **Calculate \((1 + i)^n\):** \[ (1 + 0.01475)^{24} \approx 1.42105 \] 7. **Compute the Denominator:** \[ 1.42105 - 1 = 0.42105 \] 8. **Calculate the Quarterly Payment (PMT):** \[ PMT = \frac{339.25}{0.42105} \approx 805.69 \] ### **Conclusion:** You need to deposit approximately **\$805.69** **quarterly** into the account to reach your savings goal of **\$23,000** in **6 years**. ### **Final Answer:** \[ \boxed{\$805.69} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the amount that must be deposited quarterly, you can use the future value of an ordinary annuity formula, which is: \[ FV = P \times \left(\frac{(1 + r/n)^{nt} - 1}{r/n}\right) \] Where: - \( FV \) is the future value (the amount you want to save, \( \$23,000 \)), - \( P \) is the payment (the amount to be deposited quarterly), - \( r \) is the annual interest rate (5.9% or 0.059), - \( n \) is the number of compounding periods per year (4 for quarterly), - \( t \) is the number of years (6). Rearranging the formula to solve for \( P \): \[ P = \frac{FV}{\left(\frac{(1 + r/n)^{nt} - 1}{r/n}\right)} \] Now, plug in the values: - \( FV = 23000 \) - \( r = 0.059 \) - \( n = 4 \) - \( t = 6 \) Calculate \( P \): 1. Calculate \( r/n \): \[ r/n = 0.059/4 = 0.01475 \] 2. Calculate \( nt \): \[ nt = 4 \times 6 = 24 \] 3. Calculate \( (1 + r/n)^{nt} \): \[ (1 + 0.01475)^{24} \approx 1.4082 \] 4. Now calculate the full formula: \[ \frac{(1.4082 - 1)}{0.01475} \approx 27.5584 \] 5. Finally, solve for \( P \): \[ P = \frac{23000}{27.5584} \approx 834.14 \] So, you need to deposit approximately \( \$834.14 \) quarterly to reach your goal of \( \$23,000 \) in 6 years!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad