Pregunta

The sum of the ages of a father and son is 56. Four years ago the father was 3 times as old as the son. Find the present age of each.

Ask by Griffin Watkins. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The father is 40 years old and the son is 16 years old.

Solución

Let's denote the father's current age as F and the son's current age as S. According to the problem: 1. F + S = 56 2. Four years ago, the father was three times as old as the son. So, F - 4 = 3(S - 4) Now, solve the second equation:   F - 4 = 3S - 12   F = 3S - 12 + 4   F = 3S - 8 Substitute F = 3S - 8 into the first equation:   (3S - 8) + S = 56   4S - 8 = 56   4S = 64   S = 16 Now, find F:   F = 3(16) - 8   F = 48 - 8   F = 40 Thus, the present ages are:   Father: 40 years old   Son: 16 years old

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let the father's current age be \( F \) and the son's current age be \( S \). We have two equations based on the problem statements: 1. \( F + S = 56 \) (the sum of their ages) 2. \( F - 4 = 3(S - 4) \) (the father's age four years ago was three times the son's age four years ago) From the first equation, we can express the father's age in terms of the son's age: \( F = 56 - S \). Now, substituting this into the second equation: \( (56 - S) - 4 = 3(S - 4) \). This simplifies to: \( 52 - S = 3S - 12 \). Adding \( S \) to both sides gives us: \( 52 = 4S - 12 \). Adding 12 to both sides results in: \( 64 = 4S \). Dividing both sides by 4, we find: \( S = 16 \). Now, we substitute \( S = 16 \) back into the first equation to find the father's age: \( F + 16 = 56 \), so \( F = 56 - 16 = 40 \). Thus, the present ages are: the father is 40 years old and the son is 16 years old.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad