Pregunta
upstudy study bank question image url

1. (20 pts.) Graphically solve the equation and inequality below. Sketch the graph(s) that you used and round your answers to two decimal places (hundredths place). (a) \( 6 x^{2}-2 x^{3}=-x^{2}+5 x+1 \)

Ask by Bowman Hilton. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation \( 6x^{2} - 2x^{3} = -x^{2} + 5x + 1 \) are approximately \( x \approx -0.16 \), \( x \approx 1.32 \), and \( x \approx 2.34 \).

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(6x^{2}-2x^{3}=-x^{2}+5x+1\) - step1: Move the expression to the left side: \(6x^{2}-2x^{3}-\left(-x^{2}+5x+1\right)=0\) - step2: Subtract the terms: \(7x^{2}-2x^{3}-5x-1=0\) - step3: Calculate: \(\begin{align}&x\approx -0.161702\\&x\approx 1.321037\\&x\approx 2.340665\end{align}\) - step4: Rewrite: \(x_{1}\approx -0.161702,x_{2}\approx 1.321037,x_{3}\approx 2.340665\) To solve the equation \( 6 x^{2}-2 x^{3}=-x^{2}+5 x+1 \), we first rearrange it into standard form: \[ -2x^3 + 6x^2 + x^2 - 5x - 1 = 0 \] This simplifies to: \[ -2x^3 + 7x^2 - 5x - 1 = 0 \] Next, we can find the roots of this polynomial equation. The solutions are approximately: - \( x_1 \approx -0.16 \) - \( x_2 \approx 1.32 \) - \( x_3 \approx 2.34 \) ### Graphical Representation While I cannot provide a graph directly, you can sketch the graph of the function: \[ f(x) = -2x^3 + 7x^2 - 5x - 1 \] 1. **Plot the function**: You can use graphing software or a graphing calculator to plot \( f(x) \) over the range \( x = -2 \) to \( x = 3 \). 2. **Identify the x-intercepts**: The points where the graph intersects the x-axis correspond to the solutions we found: \( x \approx -0.16, 1.32, 2.34 \). ### Inequality If you need to solve an inequality related to this equation, please specify the inequality, and I can assist you further!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To graphically solve the equation \( 6x^{2} - 2x^{3} = -x^{2} + 5x + 1 \), first rearrange it into a standard form: \( -2x^{3} + 7x^{2} - 5x - 1 = 0 \). You can graph the function \( f(x) = -2x^{3} + 7x^{2} - 5x - 1 \) and find where it intersects the x-axis. Using graphing technology or a graphing calculator, you would find the approximate points of intersection (the roots), which can be rounded to two decimal places as needed. For the inequality part, you can investigate where the graph of \( f(x) \) is greater than or less than zero. You'll look at the intervals between the roots you found for the equation and test points within each interval to establish where the original inequality holds true. Graphing the function will visually help illustrate these regions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad