In \( \Delta \mathrm{FGH}, g=920 \mathrm{~cm}, h=950 \mathrm{~cm} \) and \( \angle \mathrm{F}=110^{\circ} \). Find the area of \( \Delta \mathrm{FGH} \), to the nearest square centimeter.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the area of triangle \( \Delta \mathrm{FGH} \), we can use the formula: \[ \text{Area} = \frac{1}{2} \times g \times h \times \sin(\angle F) \] Here, \( g = 920 \, \text{cm} \), \( h = 950 \, \text{cm} \), and \( \angle F = 110^\circ \). First, we need to calculate \( \sin(110^\circ) \): \[ \sin(110^\circ) \approx 0.9397 \] Now plug in the values: \[ \text{Area} = \frac{1}{2} \times 920 \times 950 \times 0.9397 \] Calculating it gives: \[ \text{Area} \approx \frac{1}{2} \times 920 \times 950 \times 0.9397 \approx 409,042.65 \, \text{cm}^2 \] Rounding to the nearest square centimeter: \[ \text{Area} \approx 409,043 \, \text{cm}^2 \] So, the area of \( \Delta \mathrm{FGH} \) is approximately \( 409,043 \, \text{cm}^2 \).