Pregunta
(2) \( x^{2}-4 \) (5) \( 9 x^{2}-25 y^{2} \) (8) \( a^{10}-b^{6} \) (11) \( y^{8}-1 \) (14) \( \frac{a^{4}}{16}-\frac{1}{25} b^{2} \)
Ask by Warner Tran. in South Africa
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Here are the factored forms of the given expressions:
1. \( x^{2} - 4 = (x - 2)(x + 2) \)
2. \( 9x^{2} - 25y^{2} = (3x - 5y)(3x + 5y) \)
3. \( a^{10} - b^{6} = (a^{5} - b^{3})(a^{5} + b^{3}) \)
4. \( y^{8} - 1 = (y - 1)(y + 1)(y^{2} + 1)(y^{4} + 1) \)
5. \( \frac{a^{4}}{16} - \frac{b^{2}}{25} = \left(\frac{a^{2}}{4} - \frac{b}{5}\right)\left(\frac{a^{2}}{4} + \frac{b}{5}\right) \)
Solución
Sure, let's factor each of the given expressions step by step.
---
### **(2) \( x^{2} - 4 \)**
**Type of Expression:** Difference of Squares
**Factorization:**
\[
x^{2} - 4 = x^{2} - 2^{2} = (x - 2)(x + 2)
\]
---
### **(5) \( 9x^{2} - 25y^{2} \)**
**Type of Expression:** Difference of Squares
**Factorization:**
\[
9x^{2} - 25y^{2} = (3x)^{2} - (5y)^{2} = (3x - 5y)(3x + 5y)
\]
---
### **(8) \( a^{10} - b^{6} \)**
**Type of Expression:** Difference of Squares (with higher exponents)
**Factorization:**
1. **First Step: Recognize as a Difference of Squares**
\[
a^{10} - b^{6} = (a^{5})^{2} - (b^{3})^{2} = (a^{5} - b^{3})(a^{5} + b^{3})
\]
2. **Further Factoring (if possible):**
- \( a^{5} - b^{3} \) and \( a^{5} + b^{3} \) don't factor nicely over the real numbers beyond this point.
**Final Factorization:**
\[
a^{10} - b^{6} = (a^{5} - b^{3})(a^{5} + b^{3})
\]
---
### **(11) \( y^{8} - 1 \)**
**Type of Expression:** Difference of Squares (repeatedly applied)
**Factorization:**
1. **First Step:**
\[
y^{8} - 1 = (y^{4})^{2} - 1^{2} = (y^{4} - 1)(y^{4} + 1)
\]
2. **Factor \( y^{4} - 1 \) Further:**
\[
y^{4} - 1 = (y^{2})^{2} - 1^{2} = (y^{2} - 1)(y^{2} + 1) = (y - 1)(y + 1)(y^{2} + 1)
\]
3. **Combine All Factors:**
\[
y^{8} - 1 = (y - 1)(y + 1)(y^{2} + 1)(y^{4} + 1)
\]
*Note:* \( y^{4} + 1 \) can be factored further using complex numbers, but it's typically left as is in real factorization.
---
### **(14) \( \frac{a^{4}}{16} - \frac{b^{2}}{25} \)**
**Type of Expression:** Difference of Squares with Fractional Coefficients
**Factorization:**
1. **Rewrite the Expression as Squares:**
\[
\frac{a^{4}}{16} - \frac{b^{2}}{25} = \left(\frac{a^{2}}{4}\right)^{2} - \left(\frac{b}{5}\right)^{2}
\]
2. **Apply Difference of Squares Formula:**
\[
\left(\frac{a^{2}}{4}\right)^{2} - \left(\frac{b}{5}\right)^{2} = \left(\frac{a^{2}}{4} - \frac{b}{5}\right)\left(\frac{a^{2}}{4} + \frac{b}{5}\right)
\]
**Final Factorization:**
\[
\frac{a^{4}}{16} - \frac{b^{2}}{25} = \left(\frac{a^{2}}{4} - \frac{b}{5}\right)\left(\frac{a^{2}}{4} + \frac{b}{5}\right)
\]
---
Each of these factorizations utilizes the **Difference of Squares** method, which states that \( A^{2} - B^{2} = (A - B)(A + B) \). This method is fundamental in algebra for simplifying and solving various types of equations.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
The expression \( x^{2}-4 \) is a classic example of a difference of squares, which can be factored into \( (x-2)(x+2) \). This method of factoring is useful for simplifying equations and solving for \( x \) efficiently. Similarly, the expression \( 9x^{2} - 25y^{2} \) can also be factored using the difference of squares principle as \( (3x-5y)(3x+5y) \). Recognizing patterns like these is crucial in algebra, as they allow you to break down complex expressions into simpler components, making it easier to solve problems or identify roots.
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium