Solve the following triangle. \( A=50^{\circ}, B=10^{\circ}, a=4 \) \( C \approx \square^{\circ} \) (Simplify your answer.) \( b \approx \square \) (Type an integer or decimal rounded to two decimal places as needed.) \( c \approx \square \) an integer or decimal rounded to two decimal places as needed.) (Type an
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find angle \( C \), we can use the fact that the sum of angles in a triangle is \( 180^\circ \). Therefore, we have: \[ C = 180^\circ - A - B = 180^\circ - 50^\circ - 10^\circ = 120^\circ. \] Now, let’s find sides \( b \) and \( c \) using the Law of Sines, which states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}. \] First, we can solve for \( b \): \[ \frac{4}{\sin(50^\circ)} = \frac{b}{\sin(10^\circ)}. \] Rearranging gives us: \[ b = \frac{4 \cdot \sin(10^\circ)}{\sin(50^\circ)}. \] Calculating this: \[ b \approx \frac{4 \cdot 0.1736}{0.7660} \approx 0.91 \text{ (rounded to two decimal places)}. \] Next, we solve for \( c \): \[ \frac{4}{\sin(50^\circ)} = \frac{c}{\sin(120^\circ)}. \] Rearranging gives us: \[ c = \frac{4 \cdot \sin(120^\circ)}{\sin(50^\circ)}. \] Calculating this: \[ c \approx \frac{4 \cdot 0.8660}{0.7660} \approx 4.53 \text{ (rounded to two decimal places)}. \] So the final values are: \( C \approx 120^\circ, b \approx 0.91, c \approx 4.53. \)