Pregunta
Find the amplitude and the period of the function \( 2 \cos (7 x) \). (Use symbolic notation and fractions where needed.) amplitude: period:
Ask by Schultz Cruz. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Amplitude: 2
Period: \( \frac{2\pi}{7} \)
Solución
For the function \( 2 \cos(7x) \):
- **Amplitude**: The amplitude is the absolute value of the coefficient in front of the cosine function.
\[
\text{Amplitude} = |2| = 2
\]
- **Period**: The period of a cosine function \( \cos(bx) \) is calculated using the formula \( \frac{2\pi}{|b|} \). Here, \( b = 7 \).
\[
\text{Period} = \frac{2\pi}{7}
\]
**Answer:**
```
amplitude: 2
period: 2π⁄7
```
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The amplitude of the function \( 2 \cos (7 x) \) is the coefficient of the cosine function, which is \( 2 \). To find the period, we use the formula for the period of a cosine function given by \( \frac{2\pi}{|b|} \), where \( b \) is the coefficient of \( x \). In this case, \( b = 7 \), so the period is \( \frac{2\pi}{7} \). amplitude: \( 2 \) period: \( \frac{2\pi}{7} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium